SiMiD: similarity-based misinformation detection via communities on social media posts

Date

2024-01-02

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

2023 Tenth International Conference on Social Networks Analysis, Management and Security (SNAMS)

Print ISSN

2831-7351

Electronic ISSN

2831-7343

Publisher

IEEE

Volume

Issue

Pages

1 - 8

Language

en_US

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
35
views
24
downloads

Series

Abstract

Social media users often find themselves exposed to similar viewpoints and tend to avoid contrasting opinions, particularly when connected within a community. In this study, we leverage the presence of communities in misinformation detection on social media. For this purpose, we propose a similarity-based method that utilizes user-follower interactions within a social network to identify and combat misinformation spread. The method first extracts important textual features of social media posts via contrastive learning and then measures the cosine similarity per social media post based on their relevance to each user in the community. Next, we train a classifier to assess the truthfulness of social media posts using these similarity scores. We evaluate our approach on three real-world datasets and compare our method with six baselines. The experimental results and statistical tests show that contrastive learning and leveraging communities can effectively enhance the detection of misinformation on social media.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)