Sparsity penalized mean–variance portfolio selection: analysis and computation

buir.contributor.authorAkkaya, Deniz
buir.contributor.authorPınar, Mustafa Çelebi
buir.contributor.orcidPınar, Mustafa Çelebi|0000-0002-8307-187X
buir.contributor.orcidAkkaya, Deniz|0000-0002-7578-2516
dc.contributor.authorAkkaya, Deniz
dc.contributor.authorPınar, Mustafa Çelebi
dc.contributor.authorŞen, Buse
dc.date.accessioned2025-02-17T13:53:00Z
dc.date.available2025-02-17T13:53:00Z
dc.date.issued2024-11-25
dc.departmentDepartment of Industrial Engineering
dc.description.abstractWe consider the problem of mean–variance portfolio selection regularized with an -penalty term to control the sparsity of the portfolio. We analyze the structure of local and global minimizers and use our results in the design of a Branch-and-Bound algorithm coupled with an advanced start heuristic. Extensive computational results with real data as well as comparisons with an off-the-shelf and state-of-the-art (MIQP) solver are reported.
dc.description.provenanceSubmitted by Muhammed Murat Uçar (murat.ucar@bilkent.edu.tr) on 2025-02-17T13:53:00Z No. of bitstreams: 1 Sparsity_penalized_mean–variance_portfolio_selection_analysis_and_computation.pdf: 604516 bytes, checksum: ae2c3e7ce5669831cf6f53b76ae12b01 (MD5)en
dc.description.provenanceMade available in DSpace on 2025-02-17T13:53:00Z (GMT). No. of bitstreams: 1 Sparsity_penalized_mean–variance_portfolio_selection_analysis_and_computation.pdf: 604516 bytes, checksum: ae2c3e7ce5669831cf6f53b76ae12b01 (MD5) Previous issue date: 2024-11-25en
dc.identifier.doi10.1007/s10107-024-02161-5
dc.identifier.eissn1436-4646
dc.identifier.issn0025-5610
dc.identifier.urihttps://hdl.handle.net/11693/116337
dc.language.isoEnglish
dc.publisherSPRINGER HEIDELBERG
dc.relation.isversionofhttps://doi.org/10.1007/s10107-024-02161-5
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleMathematical Programming
dc.subjectMean-variance portfolio
dc.subjectRegularization
dc.subjectSparsity
dc.subjectL0-norm
dc.subjectBranch-and-Bound
dc.titleSparsity penalized mean–variance portfolio selection: analysis and computation
dc.typeArticle

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Sparsity_penalized_mean–variance_portfolio_selection_analysis_and_computation.pdf
Size:
590.35 KB
Format:
Adobe Portable Document Format

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: