Broadband analysis of multiscale electromagnetic problems: Novel incomplete-leaf MLFMA for potential integral equations

Series

Abstract

Recently introduced incomplete tree structures for the magnetic-field integral equation are modified and used in conjunction with the mixed-form multilevel fast multipole algorithm (MLFMA) to employ a novel broadband incomplete-leaf MLFMA (IL-MLFMA) to the solution of potential integral equations (PIEs) for scattering/radiation from multiscale open and closed surfaces. This population-based algorithm deploys a nonuniform clustering that enables to use deep levels safely and, when necessary, without compromising the accuracy resulting in an improved efficiency and a significant reduction for the memory requirements (order of magnitudes), while the error is controllable. The superiority of the algorithm is demonstrated in several canonical and real-life multiscale geometries.

Source Title

IEEE Transactions on Antennas and Propagation

Publisher

IEEE

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English