Error control in MLFMA with multiple-precision arithmetic
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Series
Abstract
We present a new error control method that provides the truncation numbers as well as the required digits of machine precision for the translation operator of the multilevel fast multipole algorithm (MLFMA). The proposed method is valid for all frequencies, whereas the previous studies on error control are valid only for high-frequency problems (i.e., electrically large translation distances). When combined with a multiple-precision implementation of MLFMA, the proposed method can be used to solve low-frequency problems that are problematic with a fixed-precision implementation. Numerical results in the form of optimal truncation numbers and machine precisions for a variety of box sizes and desired relative error thresholds are presented and compared with the methods or numerical surveys available in the literature.