The synthesis of mesostructured silica films and monoliths functionalised by noble metal nanoparticles

dc.citation.epage334en_US
dc.citation.issueNumber2en_US
dc.citation.spage328en_US
dc.citation.volumeNumber13en_US
dc.contributor.authorDag, Ö.en_US
dc.contributor.authorSamarskaya, O.en_US
dc.contributor.authorCoombs, N.en_US
dc.contributor.authorOzin, G. A.en_US
dc.date.accessioned2016-02-08T10:30:44Z
dc.date.available2016-02-08T10:30:44Z
dc.date.issued2003en_US
dc.departmentDepartment of Chemistryen_US
dc.description.abstractA lyotropic AgNO3, HAuCl4 and H2PtCl6-silica liquid crystalline (LC) phase is used as a supramolecular template for a one-pot synthesis of novel noble metal or complex ion containing nanocomposite materials in the form of a film and monolith. In these structures, Ag+, AuCl4- and PtCl62- ions interact with the head group of an oligo(ethylene oxide) type non-ionic surfactant (C12H25(CH2CH2O)10OH, denoted as C12EO10) assembly that are embedded within the channels of hexagonal mesostructured silica materials. A chemical and/or thermal reduction of the metal or complex ions produces nanoparticles of these metals in the mesoporous channels and the void spaces of the silica. The LC mesophase of H2O:X:HNO3:C12EO10, (where X is AgNO3, HAuCl4 and H2PtCl6), and nanocomposite silica materials of meso-SiO2-C12EO10-X and meso-SiO2-C12EO10-M (M is the Ag, Au and Pt nanoparticles) have been investigated using polarised optical microscopy (POM), powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), nuclear magnetic resonance (NMR), Fourier transform infrared (FTIR), Fourier transform (FT) Raman and UV-Vis absorption spectroscopy. Collectively the results indicate that the LC phase of a 50 w/w% H2O:C12EO10 is stable upon mixing with AgNO3, HAuCl4 and H2PtCl6 salts and/or acids. The metal ions or complex ions are distributed inside the channels of the mesoporous silica materials at low concentrations and may be converted into metal nanoparticles within the channels by a chemical and/or thermal reduction process. The metal nanoparticles have a broad size distribution where the platinum and silver particles are very small (typically 2-6 nm) and the gold particles are much larger (typically 5-30 nm).en_US
dc.identifier.doi10.1039/b209153ben_US
dc.identifier.issn0959-9428
dc.identifier.urihttp://hdl.handle.net/11693/24531
dc.language.isoEnglishen_US
dc.publisherRoyal Society of Chemistryen_US
dc.relation.isversionofhttp://dx.doi.org/10.1039/b209153ben_US
dc.source.titleJournal of Materials Chemistryen_US
dc.subjectEthylene oxideen_US
dc.subjectGold chlorideen_US
dc.subjectMetal ionen_US
dc.subjectNonionic surfactanten_US
dc.subjectPlatinum derivativeen_US
dc.subjectSilicon dioxideen_US
dc.subjectSilveren_US
dc.subjectUltraviolet spectrophotometryen_US
dc.subjectX ray powder diffractionen_US
dc.titleThe synthesis of mesostructured silica films and monoliths functionalised by noble metal nanoparticlesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
The synthesis of mesostructured silica films and monoliths functionalised by noble metal nanoparticles.pdf
Size:
419.96 KB
Format:
Adobe Portable Document Format
Description:
Full printable version