A filtration of the modular representation functor

Date

2007

Authors

Yaraneri, E.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
2
views
13
downloads

Citation Stats

Series

Abstract

Let F and K be algebraically closed fields of characteristics p > 0 and 0, respectively. For any finite group G we denote by K RF (G) = K ⊗Z G0 (F G) the modular representation algebra of G over K where G0 (F G) is the Grothendieck group of finitely generated F G-modules with respect to exact sequences. The usual operations induction, inflation, restriction, and transport of structure with a group isomorphism between the finitely generated modules of group algebras over F induce maps between modular representation algebras making K RF an inflation functor. We show that the composition factors of K RF are precisely the simple inflation functors SC, Vi where C ranges over all nonisomorphic cyclic p′-groups and V ranges over all nonisomorphic simple K Out (C)-modules. Moreover each composition factor has multiplicity 1. We also give a filtration of K RF. © 2007 Elsevier Inc. All rights reserved.

Source Title

Journal of Algebra

Publisher

Academic Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English