Chemically uracil-functionalized carbon and silicon carbide nanotubes: computational studies

Available
The embargo period has ended, and this item is now available.

Date

2018

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
11
downloads

Citation Stats

Series

Abstract

Chemical additions of uracil (U) nucleobase to sidewall of each of representative (4,4) armchair carbon and silicon carbide nanotubes (CNT and SiCNT) were investigated based on density functional theory (DFT) calculations. All singular and hybrid models were optimized to obtain the minimum-energy structures. The evaluated molecular properties indicated the effects of U-attachment on properties of both of U and NT counterparts, in which additional evaluated atomic-scale chemical shifts indicated the role of atomic sites in the U-attachment processes. Both of U-CNT and U-SiCNT hybrids could be considered as achievable compounds; however, the aim of application could organize the achievement of which hybrid. There was one possibility of U-attachment for the homo-atomic system of CNT whereas there were two possibilities of U-attachment for the hetero-atomic system of SiCNT. Interestingly, the evaluated atomic and molecular properties indicated differences between the characteristics of U-SiCNT-1 and U-SiCNT-2 as an advantage of computational chemistry methodologies, in which the results were very much interesting for the water-solvated systems.

Source Title

Materials Chemistry and Physics

Publisher

Elsevier

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English