Enhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidity

buir.contributor.authorÇağlayan, Mustafa
buir.contributor.authorIrfan, Muhammad
buir.contributor.authorErcan, Kerem Emre
buir.contributor.authorKoçak, Yusuf
buir.contributor.authorÖzensoy, Emrah
dc.citation.epage118227-12en_US
dc.citation.spage118227-1en_US
dc.citation.volumeNumber263en_US
dc.contributor.authorÇağlayan, Mustafa
dc.contributor.authorIrfan, Muhammad
dc.contributor.authorErcan, Kerem Emre
dc.contributor.authorKoçak, Yusuf
dc.contributor.authorÖzensoy, Emrah
dc.date.accessioned2021-02-19T11:10:07Z
dc.date.available2021-02-19T11:10:07Z
dc.date.issued2020
dc.departmentDepartment of Chemistryen_US
dc.departmentInstitute of Materials Science and Nanotechnology (UNAM)en_US
dc.description.abstractIn this work, we propose a simple and effective preparation procedure to obtain ternary mixed oxides composed of titania (TiO2, P25), alumina (γ-Al2O3) and calcium oxide (CaO) functioning as efficient photocatalytic NOx oxidation and storage (PHONOS) catalysts that are capable of facile NOx abatement under ambient conditions in the absence of elevated temperatures and pressures with UVA irradiation. In this architecture, titania was the photocatalytic active component and CaO and/or γ-Al2O3 provided NOx storage domains revealing dissimilar specific surface areas (SSA) and surface acidities. We show that photocatalyst formulation can be readily fine-tuned to achieve superior photocatalytic performance surpassing conventional P25 benchmark in short (1 h) and long term (12 h), as well as humidity-dependent photocatalytic tests. We demonstrate the delicate interplay between the surface acidity, SSA and humidity and provide detailed mechanistic insights regarding the origin of photocatalytic activity, selectivity and deactivation pathways.en_US
dc.description.provenanceSubmitted by Evrim Ergin (eergin@bilkent.edu.tr) on 2021-02-19T11:10:07Z No. of bitstreams: 1 Enhancement_of_photocatalytic_NOx_abatement_on_titania_via_additional_metal_oxide_NOx-storage_domains_Interplay_between_surface_acidits_specific_surface_area_and_humidity.pdf: 3807266 bytes, checksum: 6d7a8d19582fef691428709d919570f4 (MD5)en
dc.description.provenanceMade available in DSpace on 2021-02-19T11:10:07Z (GMT). No. of bitstreams: 1 Enhancement_of_photocatalytic_NOx_abatement_on_titania_via_additional_metal_oxide_NOx-storage_domains_Interplay_between_surface_acidits_specific_surface_area_and_humidity.pdf: 3807266 bytes, checksum: 6d7a8d19582fef691428709d919570f4 (MD5) Previous issue date: 2020en
dc.embargo.release2022-04-01
dc.identifier.doi10.1016/j.apcatb.2019.118227en_US
dc.identifier.issn0926-3373
dc.identifier.urihttp://hdl.handle.net/11693/75492
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.apcatb.2019.118227en_US
dc.rightsCC BY 4.0 DEED (Attribution 4.0 International)
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/
dc.source.titleApplied Catalysis B: Environmentalen_US
dc.subjectNOx abatementen_US
dc.subjectPhotocatalytic NOx oxidation-storage(PHONOS)en_US
dc.subjectTitania Calciumoxideen_US
dc.subjectAluminaen_US
dc.subjectDeNOx catalystsen_US
dc.titleEnhancement of photocatalytic NOx abatement on titania via additional metal oxide NOx-storage domains: Interplay between surface acidity, specific surface area, and humidityen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Enhancement_of_photocatalytic_NOx_abatement_on_titania_via_additional_metal_oxide_NOx-storage_domains_Interplay_between_surface_acidits_specific_surface_area_and_humidity.pdf
Size:
3.63 MB
Format:
Adobe Portable Document Format
Description: