Theoretical analysis of effects of π-conjugating substituents on building blocks for conducting polymers

Date

1999

Authors

Salzner, U.
Lagowski, J. B.
Pickup, P. G.
Poirier, R. A.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Journal of Organic Chemistry

Print ISSN

0022-3263

Electronic ISSN

Publisher

American Chemical Society

Volume

64

Issue

20

Pages

7419 - 7425

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Geometries of 4-dicyanomethylene-4H-cyclopenta[2,1-b:3,4-b'] dithiophene 1 and its C=O, C=S, C=CH2, C=CF2, and C=C(SR)2 analogues were optimized using density functional theory. Three of the above groups, C=C(CN)2, C=O, and C=S, were also examined on dipyrrole, difuran, dicyclopentadiene, and diborole. Electronic structures were analyzed with respect to their suitability as building blocks for conducting polymers with the natural bond orbital (NBO) method. All bridging groups investigated decrease HOMO-LUMO gaps compared to the unsubstituted parent dimers. Substitution affects HOMO and LUMO energies. Energy gap reduction is caused by a stronger decrease of LUMO energies compared to HOMO energies. The C=S group leads to even smaller energy gaps than the dicyanomethylene group since the HOMO is lowered less in energy with C=S. Compared to unsubstituted dimers, the strongest substituent effects are found with pyrroles and furans. Boroles and thiophenes are least affected. The smallest HOMO-LUMO gaps are obtained for electron-poor systems such as boroles followed by cyclopentadienes. This is analogous to the trend for the unsubstituted parent systems. All of the bridging groups are potential π-acceptors due to their low-lying π*-orbitals, and the corresponding polymers are predicted to be n-dopable. In aromatic structures, the LUMO is localized around the bridging substituent and the coefficients at the α-carbon atoms that reflect electron density are small. This might contribute to the poor conductivity of the n-doped form of poly-1. Electron- poor monomers and polymers tend to switch to quinoid structures. In quinoid repeat units, the HOMO is localized but not as strongly as the LUMO in the aromatic repeat units. The LUMO in quinoid repeat units is delocalized with large coefficients at the α-carbon atoms. Quinoid polymers could therefore be good conductors in the n-doped state.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)