Affect and personality aware analysis of speech content for automatic estimation of depression severity

Available
The embargo period has ended, and this item is now available.

Date

2023-09

Editor(s)

Advisor

Dibeklioğlu, Hamdi

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
44
views
22
downloads

Series

Abstract

The detection of depression has gained a significant amount of scientific attention for its potential in early diagnosis and intervention. In light of this, we propose a novel approach that places exclusive emphasis on textual features for depression severity estimation. The proposed method seamlessly integrates affect (emotion and sentiment), and personality features as distinct yet interconnected modalities within a transformer-based architecture. Our key contribution lies in a masked multimodal joint cross-attention fusion, which adeptly combines the information gleaned from these different text modalities. This fusion approach empowers the model not only to discern subtle contextual cues within textual data but also to comprehend intricate interdependencies between the modalities. A comprehensive experimental evaluation is undertaken to meticulously assess the individual components comprising the proposed architecture, as well as extraneous ones that are not inherent to it. The evaluation additionally includes the assessments conducted in a unimodal setting where the impact of each modality is examined individually. The findings derived from these experiments substantiate the self-contained efficacy of our architecture. Furthermore, we explore the significance of individual sentences within speech content, offering valuable insights into the contribution of specific textual cues and we perform a segmented evaluation of the proposed method for different ranges of depression severity. Finally, we compare our method with existing state-of-the-art studies utilizing different combinations of auditory, visual, and textual features. The final results demonstrate that our method achieves promising results in depression severity estimation, outperforming the other methods.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)