Nearest-neighbor based metric functions for indoor scene recognition

Date

2011

Authors

Cakir, F.
Güdükbay, Uğur
Ulusoy, Özgür

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

BUIR Usage Stats
1
views
26
downloads

Citation Stats

Series

Abstract

Indoor scene recognition is a challenging problem in the classical scene recognition domain due to the severe intra-class variations and inter-class similarities of man-made indoor structures. State-of-the-art scene recognition techniques such as capturing holistic representations of an image demonstrate low performance on indoor scenes. Other methods that introduce intermediate steps such as identifying objects and associating them with scenes have the handicap of successfully localizing and recognizing the objects in a highly cluttered and sophisticated environment. We propose a classification method that can handle such difficulties of the problem domain by employing a metric function based on the Nearest-Neighbor classification procedure using the bag-of-visual words scheme, the so-called codebooks. Considering the codebook construction as a Voronoi tessellation of the feature space, we have observed that, given an image, a learned weighted distance of the extracted feature vectors to the center of the Voronoi cells gives a strong indication of the image's category. Our method outperforms state-of-the-art approaches on an indoor scene recognition benchmark and achieves competitive results on a general scene dataset, using a single type of descriptor. © 2011 Elsevier Inc. All rights reserved.

Source Title

Computer Vision and Image Understanding

Publisher

Academic Press

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)

Language

English