Deconvolution using projections onto the epigraph set of a convex cost function
buir.contributor.author | Çetin, A. Enis | |
buir.contributor.orcid | Çetin, A. Enis|0000-0002-3449-1958 | |
dc.citation.epage | 1641 | en_US |
dc.citation.spage | 1638 | en_US |
dc.contributor.author | Tofighi, Mohammad | en_US |
dc.contributor.author | Bozkurt, Alican | en_US |
dc.contributor.author | Köse, K. | en_US |
dc.contributor.author | Çetin, A. Enis | en_US |
dc.coverage.spatial | Trabzon, Turkey | en_US |
dc.date.accessioned | 2016-02-08T11:46:21Z | |
dc.date.available | 2016-02-08T11:46:21Z | |
dc.date.issued | 2014 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description | Date of Conference: 23-25 April 2014 | en_US |
dc.description | Conference Name: 22nd Signal Processing and Communications Applications Conference, SIU 2014 | en_US |
dc.description.abstract | A new deconvolution algorithm based on making orthogonal projections onto the epigraph set of a convex cost function is presented. In this algorithm, the dimension of the minimization problem is lifted by one and sets corresponding to the cost function and observations are defined. If the utilized cost function is convex in RN, the corresponding epigraph set is also convex in RN+1. The deconvolution algorithm starts with an arbitrary initial estimate in RN+1. At each iteration cycle of the algorithm, first deconvolution projections are performed onto the hyperplanes representing observations, then an orthogonal projection is performed onto epigraph of the cost function. The method provides globally optimal solutions for total variation, l1, l2, and entropic cost functions. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T11:46:21Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2014 | en |
dc.identifier.doi | 10.1109/SIU.2014.6830560 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/27163 | |
dc.language.iso | Turkish | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/SIU.2014.6830560 | en_US |
dc.source.title | Proceedings of the 22nd Signal Processing and Communications Applications Conference, SIU 2014 | en_US |
dc.subject | Epigraph of a cost function | en_US |
dc.subject | Cost functions | en_US |
dc.subject | Deconvolution | en_US |
dc.subject | Iterative methods | en_US |
dc.subject | Signal processing | en_US |
dc.subject | Convex cost function | en_US |
dc.subject | Deconvolution algorithm | en_US |
dc.subject | Initial estimate | en_US |
dc.subject | Minimization problems | en_US |
dc.subject | Optimal solutions | en_US |
dc.subject | Orthogonal projection | en_US |
dc.subject | Projection onto convex sets | en_US |
dc.subject | Total variation | en_US |
dc.subject | Algorithms | en_US |
dc.title | Deconvolution using projections onto the epigraph set of a convex cost function | en_US |
dc.title.alternative | Dışbükey maliyet fonksiyonlaının epigraf kümesine dikey izdüşüm kullanan ters evrişim algoritması | en_US |
dc.type | Conference Paper | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Deconvolution using projections onto the epigraph set of a convex cost function [Dişbükey maliyet fonksiyonlarinin epigraf kümesine dikey izdüşüm kullanan ters evrişim algoritmasi].pdf
- Size:
- 710.3 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version