Using unknowns to prevent discovery of association rules

dc.citation.epage54en_US
dc.citation.issueNumber4en_US
dc.citation.spage45en_US
dc.citation.volumeNumber30en_US
dc.contributor.authorSaygin, Y.en_US
dc.contributor.authorVerykios V.S.en_US
dc.contributor.authorClifton, C.en_US
dc.date.accessioned2016-02-08T10:34:03Z
dc.date.available2016-02-08T10:34:03Z
dc.date.issued2001en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractData mining technology has given us new capabilities to identify correlations in large data sets. This introduces risks when the data is to be made public, but the correlations are private. We introduce a method for selectively removing individual values from a database to prevent the discovery of a set of rules, while preserving the data for other applications. The efficacy and complexity of this method are discussed. We also present an experiment showing an example of this methodology.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:34:03Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2001en
dc.identifier.issn1635808en_US
dc.identifier.urihttp://hdl.handle.net/11693/24765en_US
dc.language.isoEnglishen_US
dc.source.titleSIGMOD Recorden_US
dc.titleUsing unknowns to prevent discovery of association rulesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Using unknowns to prevent discovery of association rules.pdf
Size:
948.72 KB
Format:
Adobe Portable Document Format
Description:
Full printable version