Semantic and goal-oriented signal processing: semantic extraction
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Advances in machine learning technology have enabled real-time extraction of semantic information in signals, which has the potential to revolutionize signal processing techniques and drastically improve their performance for next-generation applications. A graph-based semantic language and a goal-oriented semantic signal processing framework are adopted for structured and universal representation and efficient processing of semantic information. In the adopted framework, preprocessing of input signals is followed by a semantic extractor which identifies components from a set of application-specific predefined classes where the states, actions, and relations among the identified components are described by another application-specific predefined set called predicates. For additional information, the resulting semantic graph is also embedded with a hierarchical set of attributes. In this thesis, we focus on the crucial semantic extractor block, and to illustrate the proposed framework’s applicability, we present a real-time computer vision application on video-stream data where we adopt a tracking by detection paradigm for the identification of semantic components. Next, we show that with the adopted semantic representation and goal-filtering, the semantic signal processing framework can achieve an extremely high reduction in data rates compared to traditional approaches. Finally, we demonstrate a way to identify points of significant innovation over extended periods of time by tracking the evolution of multi-level attributes and discussing future research directions.