Groebner basis approach in graph-theoretical problems

buir.advisorSezer, Müfit
dc.contributor.authorÖrün, Onur Muharrem
dc.date.accessioned2016-07-12T13:09:19Z
dc.date.available2016-07-12T13:09:19Z
dc.date.copyright2016-06
dc.date.issued2016-06
dc.date.submitted2016-06-22
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (M.S.): Bilkent University, Department of Mathematics, İhsan Doğramacı Bilkent University, 2016.en_US
dc.descriptionIncludes bibliographical references (leaves 55-56).en_US
dc.description.abstractIn the study of graphs, it is often desirable to know about the colorability properties of a given graph or whether it is planar or if it contains a Hamiltonian cycle. We consider such problems and describe corresponding encodings to equate these problems to problems of solving systems of polynomial equations. This in turn reduces the problem to computing lead term ideals from a certain generating set using Groebner basis theory.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2016-07-12T13:09:19Z No. of bitstreams: 1 OnurOrunTez.pdf: 437791 bytes, checksum: 405f2b9f3e392bd3b0c592e69a942893 (MD5)en
dc.description.provenanceMade available in DSpace on 2016-07-12T13:09:19Z (GMT). No. of bitstreams: 1 OnurOrunTez.pdf: 437791 bytes, checksum: 405f2b9f3e392bd3b0c592e69a942893 (MD5) Previous issue date: 2016-06en
dc.description.statementofresponsibilityby Onur Muharrem Örün.en_US
dc.format.extentvii, 56 leaves : charts.en_US
dc.identifier.itemidB153612
dc.identifier.urihttp://hdl.handle.net/11693/30129
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectGroebner basisen_US
dc.subjectHilbert's Nullstellensatzen_US
dc.subjectGraph colorabilityen_US
dc.subjectHamiltonian cycleen_US
dc.subjectPlanar graphen_US
dc.subjectEdge-chromatic numberen_US
dc.titleGroebner basis approach in graph-theoretical problemsen_US
dc.title.alternativeÇizge kuramsal problemlerde groebner baz yaklaşımıen_US
dc.typeThesisen_US
thesis.degree.disciplineMathematics
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
OnurOrunTez.pdf
Size:
427.53 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: