Computing localized power-efficient data aggregation trees for sensor networks

Date

2011

Authors

Tan, H. O.
Korpeoglu, I.
Stojmenovic, I.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Parallel and Distributed Systems

Print ISSN

1045-9219

Electronic ISSN

Publisher

Institute of Electrical and Electronics Engineers

Volume

22

Issue

3

Pages

489 - 500

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
11
downloads

Series

Abstract

We propose localized, self organizing, robust, and energy-efficient data aggregation tree approaches for sensor networks, which we call Localized Power-Efficient Data Aggregation Protocols (L-PEDAPs). They are based on topologies, such as LMST and RNG, that can approximate minimum spanning tree and canbeefficiently computed using only position or distance information ofone-hop neighbors. The actual routing tree is constructed over these topologies. We also consider different parent selection strategies while constructing a routing tree. We compare each topology and parent selection strategy and conclude that the best among them is the shortest path strategy over LMST structure. Our solution also involves route maintenance procedures that will beexecuted whenasensor node fails ora new node is added to the network. The proposed solution is also adapted to consider the remaining power levels ofnodes in orderto increase the network lifetime. Our simulation results show that byusing our power-aware localized approach, we can almost have the same performance of a centralized solution in terms of network lifetime, and close to 90 percent of an upper bound derived here. © 2011 IEEE.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)