On the Lévy-Raikov-Marcinkiewicz theorem

dc.citation.epage325en_US
dc.citation.issueNumber1en_US
dc.citation.spage314en_US
dc.citation.volumeNumber296en_US
dc.contributor.authorOstrovskii I.en_US
dc.contributor.authorUlanovskii, A.en_US
dc.date.accessioned2016-02-08T10:26:26Z
dc.date.available2016-02-08T10:26:26Z
dc.date.issued2004en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet μ be a finite non-negative Borel measure. The classical Lévy-Raikov-Marcinkiewicz theorem states that if its Fourier transform μ̂ can be analytically continued to some complex half-neighborhood of the origin containing an interval (0,iR) then μ̂ admits analytic continuation into the strip {t: 0<It<R}. We extend this result to general classes of measures and distributions, assuming non-negativity only on some ray and allowing temperate growth on the whole line. © 2004 Elsevier Inc. All rights reserved.en_US
dc.identifier.doi10.1016/j.jmaa.2004.04.021en_US
dc.identifier.issn0022247X
dc.identifier.urihttp://hdl.handle.net/11693/24255
dc.language.isoEnglishen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.jmaa.2004.04.021en_US
dc.source.titleJournal of Mathematical Analysis and Applicationsen_US
dc.subjectAnalytic continuationen_US
dc.subjectBorel measureen_US
dc.subjectFourier transformen_US
dc.subjectTemperate distributionen_US
dc.titleOn the Lévy-Raikov-Marcinkiewicz theoremen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
On the Lévy–Raikov–Marcinkiewicz theorem.pdf
Size:
210.9 KB
Format:
Adobe Portable Document Format
Description:
Full printable version