On the Lévy-Raikov-Marcinkiewicz theorem
dc.citation.epage | 325 | en_US |
dc.citation.issueNumber | 1 | en_US |
dc.citation.spage | 314 | en_US |
dc.citation.volumeNumber | 296 | en_US |
dc.contributor.author | Ostrovskii I. | en_US |
dc.contributor.author | Ulanovskii, A. | en_US |
dc.date.accessioned | 2016-02-08T10:26:26Z | |
dc.date.available | 2016-02-08T10:26:26Z | |
dc.date.issued | 2004 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let μ be a finite non-negative Borel measure. The classical Lévy-Raikov-Marcinkiewicz theorem states that if its Fourier transform μ̂ can be analytically continued to some complex half-neighborhood of the origin containing an interval (0,iR) then μ̂ admits analytic continuation into the strip {t: 0<It<R}. We extend this result to general classes of measures and distributions, assuming non-negativity only on some ray and allowing temperate growth on the whole line. © 2004 Elsevier Inc. All rights reserved. | en_US |
dc.identifier.doi | 10.1016/j.jmaa.2004.04.021 | en_US |
dc.identifier.issn | 0022247X | |
dc.identifier.uri | http://hdl.handle.net/11693/24255 | |
dc.language.iso | English | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jmaa.2004.04.021 | en_US |
dc.source.title | Journal of Mathematical Analysis and Applications | en_US |
dc.subject | Analytic continuation | en_US |
dc.subject | Borel measure | en_US |
dc.subject | Fourier transform | en_US |
dc.subject | Temperate distribution | en_US |
dc.title | On the Lévy-Raikov-Marcinkiewicz theorem | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- On the Lévy–Raikov–Marcinkiewicz theorem.pdf
- Size:
- 210.9 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version