Korteweg-de Vries surfaces

dc.citation.epage22en_US
dc.citation.spage11en_US
dc.citation.volumeNumber95en_US
dc.contributor.authorGurses, M.en_US
dc.contributor.authorTek, S.en_US
dc.date.accessioned2015-07-28T12:05:53Z
dc.date.available2015-07-28T12:05:53Z
dc.date.issued2014-01en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe consider 2-surfaces arising from the Korteweg-de Vries (KdV) hierarchy and the KdV equation. The surfaces corresponding to the KdV equation are in a three-dimensional Minkowski (M3) space. They contain a family of quadratic Weingarten and Willmore-like surfaces. We show that some KdV surfaces can be obtained from a variational principle where the Lagrange function is a polynomial function of the Gaussian and mean curvatures. We also give a method for constructing the surfaces explicitly, i.e., finding their parameterizations or finding their position vectors.© 2013 Elsevier Ltd. All rights reser.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:05:53Z (GMT). No. of bitstreams: 1 10.1016-j.na.2013.08.025.pdf: 566648 bytes, checksum: 7a0e8323534a7f094f3bb60431a92845 (MD5)en
dc.identifier.doi10.1016/j.na.2013.08.025en_US
dc.identifier.issn0362-546X
dc.identifier.urihttp://hdl.handle.net/11693/13348
dc.language.isoEnglishen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.na.2013.08.025en_US
dc.source.titleNonlinear Analysis: Theory, Methods and Applicationsen_US
dc.subjectIntegrable Equationsen_US
dc.subjectShape Equationen_US
dc.subjectSoliton Surfacesen_US
dc.subjectWeingarten Surfacesen_US
dc.subjectWillmore Surfacesen_US
dc.titleKorteweg-de Vries surfacesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.na.2013.08.025.pdf
Size:
553.37 KB
Format:
Adobe Portable Document Format
Description:
Full printable version