Korteweg-de Vries surfaces
dc.citation.epage | 22 | en_US |
dc.citation.spage | 11 | en_US |
dc.citation.volumeNumber | 95 | en_US |
dc.contributor.author | Gurses, M. | en_US |
dc.contributor.author | Tek, S. | en_US |
dc.date.accessioned | 2015-07-28T12:05:53Z | |
dc.date.available | 2015-07-28T12:05:53Z | |
dc.date.issued | 2014-01 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | We consider 2-surfaces arising from the Korteweg-de Vries (KdV) hierarchy and the KdV equation. The surfaces corresponding to the KdV equation are in a three-dimensional Minkowski (M3) space. They contain a family of quadratic Weingarten and Willmore-like surfaces. We show that some KdV surfaces can be obtained from a variational principle where the Lagrange function is a polynomial function of the Gaussian and mean curvatures. We also give a method for constructing the surfaces explicitly, i.e., finding their parameterizations or finding their position vectors.© 2013 Elsevier Ltd. All rights reser. | en_US |
dc.description.provenance | Made available in DSpace on 2015-07-28T12:05:53Z (GMT). No. of bitstreams: 1 10.1016-j.na.2013.08.025.pdf: 566648 bytes, checksum: 7a0e8323534a7f094f3bb60431a92845 (MD5) | en |
dc.identifier.doi | 10.1016/j.na.2013.08.025 | en_US |
dc.identifier.issn | 0362-546X | |
dc.identifier.uri | http://hdl.handle.net/11693/13348 | |
dc.language.iso | English | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.na.2013.08.025 | en_US |
dc.source.title | Nonlinear Analysis: Theory, Methods and Applications | en_US |
dc.subject | Integrable Equations | en_US |
dc.subject | Shape Equation | en_US |
dc.subject | Soliton Surfaces | en_US |
dc.subject | Weingarten Surfaces | en_US |
dc.subject | Willmore Surfaces | en_US |
dc.title | Korteweg-de Vries surfaces | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 10.1016-j.na.2013.08.025.pdf
- Size:
- 553.37 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version