Harmonic Besov spaces on the ball

dc.citation.epage1650070-59en_US
dc.citation.issueNumber9en_US
dc.citation.spage1650070-1en_US
dc.citation.volumeNumber27en_US
dc.contributor.authorGergün, S.en_US
dc.contributor.authorKaptanoğlu, H. T.en_US
dc.contributor.authorÜreyen, A. E.en_US
dc.date.accessioned2018-04-12T11:06:38Z
dc.date.available2018-04-12T11:06:38Z
dc.date.issued2016en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe initiate a detailed study of two-parameter Besov spaces on the unit ball of ℝn consisting of harmonic functions whose sufficiently high-order radial derivatives lie in harmonic Bergman spaces. We compute the reproducing kernels of those Besov spaces that are Hilbert spaces. The kernels are weighted infinite sums of zonal harmonics and natural radial fractional derivatives of the Poisson kernel. Estimates of the growth of kernels lead to characterization of integral transformations on Lebesgue classes. The transformations allow us to conclude that the order of the radial derivative is not a characteristic of a Besov space as long as it is above a certain threshold. Using kernels, we define generalized Bergman projections and characterize those that are bounded from Lebesgue classes onto Besov spaces. The projections provide integral representations for the functions in these spaces and also lead to characterizations of the functions in the spaces using partial derivatives. Several other applications follow from the integral representations such as atomic decomposition, growth at the boundary and of Fourier coefficients, inclusions among them, duality and interpolation relations, and a solution to the Gleason problem. © 2016 World Scientific Publishing Company.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:06:38Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1142/S0129167X16500701en_US
dc.identifier.eissn1793-6519
dc.identifier.issn0129-167X
dc.identifier.urihttp://hdl.handle.net/11693/37230
dc.language.isoEnglishen_US
dc.publisherWorld Scientific Publishingen_US
dc.relation.isversionofhttp://dx.doi.org/10.1142/S0129167X16500701en_US
dc.source.titleInternational Journal of Mathematicsen_US
dc.subjectatomic decompositionen_US
dc.subjectBergman projectionen_US
dc.subjectBergman spaceen_US
dc.subjectBesov spaceen_US
dc.subjectBoundary growthen_US
dc.subjectDualityen_US
dc.subjectFourier coefficienten_US
dc.subjectGegenbauer (ultraspherical) polynomialen_US
dc.subjectGleason problemen_US
dc.subjectHardy spaceen_US
dc.subjectInterpolationen_US
dc.subjectMöbius transformationen_US
dc.subjectPoisson kernelen_US
dc.subjectRadial fractional derivativeen_US
dc.subjectReproducing kernelen_US
dc.subjectSpherical harmonicen_US
dc.subjectZonal harmonicen_US
dc.subject31B05en_US
dc.subject31B10en_US
dc.subject31C25en_US
dc.subject26A33en_US
dc.subject33C55en_US
dc.subject42B35en_US
dc.subject45P05en_US
dc.subject46E22en_US
dc.titleHarmonic Besov spaces on the ballen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Harmonic Besov spaces on the ball.pdf
Size:
660 KB
Format:
Adobe Portable Document Format
Description:
Full printable version