Predicting the risk of death of cryptocurrencies

Date

2023-07-27

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

2023 IEEE International Conference on Omni-layer Intelligent Systems (COINS 2023)

Print ISSN

Electronic ISSN

Publisher

IEEE - Institute of Electrical and Electronics Engineers

Volume

Issue

Pages

1 - 6

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
48
views
24
downloads

Series

Abstract

In recent years, the attention drawn by cryptocurrencies has increased as their popularity grows rapidly. This situation attracts investors, entrepreneurs, regulators, and the general public. However, these coins may die and become dead coins. A coin is declared dead if no activity is recorded for more than one year. Numerous coins die without completing their one-year timeframe and this issue causes investors to lose a significant amount of money. In this study, we develop a deep neural network architecture based on long short-term memory (LSTM) to predict the death risk of a coin in a specified timeframe. In order to do this, time-series data consisting of the closing price and volume values of 4733 dead coins are utilized. The goal of our model is to inform investors about the death risk of the coin and improve their overall portfolio performance.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)