Chat mining: predicting user and message attributes in computer-mediated communication

buir.contributor.authorAykanat, Cevdet
dc.citation.epage1466en_US
dc.citation.issueNumber4en_US
dc.citation.spage1448en_US
dc.citation.volumeNumber44en_US
dc.contributor.authorKucukyilmaz T.en_US
dc.contributor.authorCambazoglu, B. B.en_US
dc.contributor.authorAykanat, Cevdeten_US
dc.contributor.authorCan, F.en_US
dc.date.accessioned2016-02-08T10:08:39Z
dc.date.available2016-02-08T10:08:39Z
dc.date.issued2008-07en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractThe focus of this paper is to investigate the possibility of predicting several user and message attributes in text-based, real-time, online messaging services. For this purpose, a large collection of chat messages is examined. The applicability of various supervised classification techniques for extracting information from the chat messages is evaluated. Two competing models are used for defining the chat mining problem. A term-based approach is used to investigate the user and message attributes in the context of vocabulary use while a style-based approach is used to examine the chat messages according to the variations in the authors' writing styles. Among 100 authors, the identity of an author is correctly predicted with 99.7% accuracy. Moreover, the reverse problem is exploited, and the effect of author attributes on computer-mediated communications is discussed. © 2008 Elsevier Ltd. All rights reserved.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:08:39Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2008en
dc.identifier.doi10.1016/j.ipm.2007.12.009en_US
dc.identifier.issn0306-4573en_US
dc.identifier.urihttp://hdl.handle.net/11693/23079en_US
dc.language.isoEnglishen_US
dc.publisherElsevier Ltden_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.ipm.2007.12.009en_US
dc.source.titleInformation Processing & Managementen_US
dc.subjectAuthorship analysisen_US
dc.subjectChat miningen_US
dc.subjectComputer-mediated communicationen_US
dc.subjectMachine learningen_US
dc.subjectStylisticsen_US
dc.subjectText classificationen_US
dc.titleChat mining: predicting user and message attributes in computer-mediated communicationen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chat mining Predicting user and message attributes in computer-mediated communication.pdf
Size:
265.13 KB
Format:
Adobe Portable Document Format
Description:
Full printable version