An integrable family of Monge-Ampère equations and their multi-Hamiltonian structure

dc.citation.epage274en_US
dc.citation.issueNumber3en_US
dc.citation.spage270en_US
dc.citation.volumeNumber173en_US
dc.contributor.authorNutku, Y.en_US
dc.contributor.authorSarıoğlu, Ö.en_US
dc.date.accessioned2016-02-08T10:54:15Z
dc.date.available2016-02-08T10:54:15Z
dc.date.issued1993en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractWe have identified a completely integrable family of Monge-Ampère equations through an examination of their Hamiltonian structure. Starting with a variational formulation of the Monge-Ampère equations we have constructed the first Hamiltonian operator through an application of Dirac's theory of constraints. The completely integrable class of Monge-Ampère equations are then obtained by solving the Jacobi identities for a sufficiently general form of the second Hamiltonian operator that is compatible with the first. © 1993.en_US
dc.identifier.doi10.1016/0375-9601(93)90277-7en_US
dc.identifier.eissn1873-2429
dc.identifier.issn0375-9601
dc.identifier.urihttp://hdl.handle.net/11693/26050
dc.language.isoEnglishen_US
dc.publisherElsevier BV * North-Hollanden_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/0375-9601(93)90277-7en_US
dc.source.titlePhysics Letters Aen_US
dc.titleAn integrable family of Monge-Ampère equations and their multi-Hamiltonian structureen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An_integrable_family_of_Monge_Ampere_equations_and_their_multi-Hamiltonian_structure.pdf
Size:
305.59 KB
Format:
Adobe Portable Document Format
Description:
Full printable version