Over-the-air multi-sensor inference with neural networks using memristor-based analog computing
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
BUIR Usage Stats
views
downloads
Citation Stats
Attention Stats
Series
Abstract
Deep neural networks provide reliable solutions for many classification and regression tasks; however, their application in real-time wireless systems with simple sensor networks is limited due to high energy consumption and significant bandwidth needs. This study proposes a multi-sensor wireless inference system with memristor-based analog computing. Given the sensors’ limited computational capabilities, the features from the network’s front end are transmitted to a central device where an 𝐿𝑝 -norm inspired approximation of the maximum operation is employed to achieve transformation-invariant features, enabling efficient overthe-air transmission. We also introduce a trainable over-the-air sensor fusion method based on 𝐿𝑝 -norm inspired combining function that customizes sensor fusion to match the network and sensor distribution characteristics, enhancing adaptability. To address the energy constraints of sensors, we utilize memristors, known for their energy-efficient in-memory computing, enabling analog-domain computations that reduce energy use and computational overhead in edge computing. This dual approach of memristors and 𝐿𝑝 -norm inspired sensor fusion fosters energy-efficient computational and transmission paradigms and serves as a practical energy-efficient solution with minimal performance loss.