Investigation of sensor placement for accurate fall detection

dc.citation.epage232en_US
dc.citation.spage225en_US
dc.citation.volumeNumber192en_US
dc.contributor.authorNtanasis, P.en_US
dc.contributor.authorPippa, E.en_US
dc.contributor.authorÖzdemir, A. T.en_US
dc.contributor.authorBarshan, Billuren_US
dc.contributor.authorMegalooikonomou, V.en_US
dc.coverage.spatialMilan, Italyen_US
dc.date.accessioned2018-04-12T11:46:53Zen_US
dc.date.available2018-04-12T11:46:53Zen_US
dc.date.issued2017en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 14-16 November 2016en_US
dc.descriptionConference Name: 6th International Conference on Wireless Mobile Communication and Healthcare, MobiHealth 2016en_US
dc.description.abstractFall detection is typically based on temporal and spectral analysis of multi-dimensional signals acquired from wearable sensors such as tri-axial accelerometers and gyroscopes which are attached at several parts of the human body. Our aim is to investigate the location where such wearable sensors should be placed in order to optimize the discrimination of falls from other Activities of Daily Living (ADLs). To this end, we perform feature extraction and classification based on data acquired from a single sensor unit placed on a specific body part each time. The investigated sensor locations include the head, chest, waist, wrist, thigh and ankle. Evaluation of several classification algorithms reveals the waist and the thigh as the optimal locations.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T11:46:53Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2017en
dc.identifier.doi10.1007/978-3-319-58877-3_30en_US
dc.identifier.issn1867-8211en_US
dc.identifier.urihttp://hdl.handle.net/11693/37653en_US
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/978-3-319-58877-3_30en_US
dc.source.titleLecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineeringen_US
dc.subjectAccelerometersen_US
dc.subjectClassificationen_US
dc.subjectFall classificationen_US
dc.subjectFall detectionen_US
dc.subjectGyroscopesen_US
dc.subjectMachine learningen_US
dc.subjectSensor placementen_US
dc.subjectWearable sensorsen_US
dc.titleInvestigation of sensor placement for accurate fall detectionen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Investigation of sensor placement for accurate fall detection.pdf
Size:
479.23 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version