Resource optimization of multi-purpose IoT wireless sensor networks with shared monitoring points

Available
The embargo period has ended, and this item is now available.

Date

2022-11

Editor(s)

Advisor

Ulusoy, Özgür

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

Wireless sensor networks (WSNs) have many applications and are an essential part of IoT systems. The primary functionality of a WSN is to gather data from certain points that are covered with sensor nodes and transmit the collected data to remote central units for further processing. In IoT use cases, a WSN infrastructure may need to be shared by many applications. Moreover, the data gathered from a certain point or sub-region can satisfy the need of multiple ap-plications. Hence, sensing the data once in such cases is advantageous to increase the acceptance ratio of the applications and reduce waiting times of applications, makespan, energy consumption, and traffic in the network. We call this approach monitoring point-based shared data approach. In this thesis, we focus on both placement and scheduling of the applications, each of which requires some points in the area a WSN covers to be monitored. We propose genetic algorithm-based approaches to deal with these two problems. Additionally, we propose greedy al-gorithms that will be useful where fast decision-making is required. We realized extensive simulation experiments and compared our algorithms with the methods from the literature. The results show the effectiveness of our algorithms in terms of various metrics.

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Doctoral

Degree Name

Ph.D. (Doctor of Philosophy)

Citation

Published Version (Please cite this version)