Markovian RNN: an adaptive time series prediction network with HMM-based switching for nonstationary environments

Date

2023-02-01

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Neural Networks and Learning Systems

Print ISSN

2162-237X

Electronic ISSN

2162-2388

Publisher

Institute of Electrical and Electronics Engineers Inc.

Volume

34

Issue

2

Pages

715 - 728

Language

english

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
29
views
143
downloads

Series

Abstract

We investigate nonlinear regression for nonstationary sequential data. In most real-life applications such as business domains including finance, retail, energy, and economy, time series data exhibit nonstationarity due to the temporally varying dynamics of the underlying system. We introduce a novel recurrent neural network (RNN) architecture, which adaptively switches between internal regimes in a Markovian way to model the nonstationary nature of the given data. Our model, Markovian RNN employs a hidden Markov model (HMM) for regime transitions, where each regime controls hidden state transitions of the recurrent cell independently. We jointly optimize the whole network in an end-to-end fashion. We demonstrate the significant performance gains compared to conventional methods such as Markov Switching ARIMA, RNN variants and recent statistical and deep learning-based methods through an extensive set of experiments with synthetic and real-life datasets. We also interpret the inferred parameters and regime belief values to analyze the underlying dynamics of the given sequences.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)