Parallel sparse matrix vector multiplication techniques for shared memory architectures

Date

2014

Editor(s)

Advisor

Aykanat, Cevdet

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Type

Journal Title

Journal ISSN

Volume Title

Attention Stats
Usage Stats
3
views
9
downloads

Series

Abstract

SpMxV (Sparse matrix vector multiplication) is a kernel operation in linear solvers in which a sparse matrix is multiplied with a dense vector repeatedly. Due to random memory access patterns exhibited by SpMxV operation, hardware components such as prefetchers, CPU caches, and built in SIMD units are under-utilized. Consequently, limiting parallelization efficieny. In this study we developed; • an adaptive runtime scheduling and load balancing algorithms for shared memory systems, • a hybrid storage format to help effectively vectorize sub-matrices, • an algorithm to extract proposed hybrid sub-matrix storage format. Implemented techniques are designed to be used by both hypergraph partitioning powered and spontaneous SpMxV operations. Tests are carried out on Knights Corner (KNC) coprocessor which is an x86 based many-core architecture employing NoC (network on chip) communication subsystem. However, proposed techniques can also be implemented for GPUs (graphical processing units).

Course

Other identifiers

Book Title

Degree Discipline

Computer Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)