Orthogonal Polynomials Associated with Equilibrium Measures on ℝ
dc.citation.epage | 401 | en_US |
dc.citation.issueNumber | 2 | en_US |
dc.citation.spage | 393 | en_US |
dc.citation.volumeNumber | 46 | en_US |
dc.contributor.author | Alpan, Gökalp | en_US |
dc.date.accessioned | 2018-04-12T11:14:04Z | |
dc.date.available | 2018-04-12T11:14:04Z | |
dc.date.issued | 2017 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let K be a non-polar compact subset of ℝ and μK denote the equilibrium measure of K. Furthermore, let Pn(⋅;μK) be the n-th monic orthogonal polynomial for μK. It is shown that ∥Pn(⋅;μK)∥L2(μK), the Hilbert norm of Pn(⋅;μK) in L2(μK), is bounded below by Cap(K)n for each n∈ ℕ. A sufficient condition is given for(∥Pn(⋅;μK)∥L2(μK)/Cap(K)n)n=1∞ to be unbounded. More detailed results are presented for sets which are union of finitely many intervals. © 2016, Springer Science+Business Media Dordrecht. | en_US |
dc.identifier.doi | 10.1007/s11118-016-9589-3 | en_US |
dc.identifier.issn | 0926-2601 | |
dc.identifier.uri | http://hdl.handle.net/11693/37459 | |
dc.language.iso | English | en_US |
dc.publisher | Springer Netherlands | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s11118-016-9589-3 | en_US |
dc.source.title | Potential Analysis | en_US |
dc.subject | Equilibrium measure | en_US |
dc.subject | Jacobi matrices | en_US |
dc.subject | Orthogonal polynomials | en_US |
dc.subject | Widom factors | en_US |
dc.title | Orthogonal Polynomials Associated with Equilibrium Measures on ℝ | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Orthogonal Polynomials Associated with Equilibrium Measures on R.pdf
- Size:
- 246.18 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version