Orthogonal Polynomials Associated with Equilibrium Measures on ℝ

dc.citation.epage401en_US
dc.citation.issueNumber2en_US
dc.citation.spage393en_US
dc.citation.volumeNumber46en_US
dc.contributor.authorAlpan, Gökalpen_US
dc.date.accessioned2018-04-12T11:14:04Z
dc.date.available2018-04-12T11:14:04Z
dc.date.issued2017en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet K be a non-polar compact subset of ℝ and μK denote the equilibrium measure of K. Furthermore, let Pn(⋅;μK) be the n-th monic orthogonal polynomial for μK. It is shown that ∥Pn(⋅;μK)∥L2(μK), the Hilbert norm of Pn(⋅;μK) in L2(μK), is bounded below by Cap(K)n for each n∈ ℕ. A sufficient condition is given for(∥Pn(⋅;μK)∥L2(μK)/Cap(K)n)n=1∞ to be unbounded. More detailed results are presented for sets which are union of finitely many intervals. © 2016, Springer Science+Business Media Dordrecht.en_US
dc.identifier.doi10.1007/s11118-016-9589-3en_US
dc.identifier.issn0926-2601
dc.identifier.urihttp://hdl.handle.net/11693/37459
dc.language.isoEnglishen_US
dc.publisherSpringer Netherlandsen_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s11118-016-9589-3en_US
dc.source.titlePotential Analysisen_US
dc.subjectEquilibrium measureen_US
dc.subjectJacobi matricesen_US
dc.subjectOrthogonal polynomialsen_US
dc.subjectWidom factorsen_US
dc.titleOrthogonal Polynomials Associated with Equilibrium Measures on ℝen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Orthogonal Polynomials Associated with Equilibrium Measures on R.pdf
Size:
246.18 KB
Format:
Adobe Portable Document Format
Description:
Full printable version