Parallelization of Sparse Matrix Kernels for big data applications

Date

2016

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Springer

Volume

Issue

Pages

367 - 382

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
24
downloads

Series

Computer Communications and Networks;

Abstract

Analysis of big data on large-scale distributed systems often necessitates efficient parallel graph algorithms that are used to explore the relationships between individual components. Graph algorithms use the basic adjacency list representation for graphs, which can also be viewed as a sparse matrix. This correspondence between representation of graphs and sparse matrices makes it possible to express many important graph algorithms in terms of basic sparse matrix operations, where the literature for optimization is more mature. For example, the graph analytic libraries such as Pegasus and Combinatorial BLAS use sparse matrix kernels for a wide variety of operations on graphs. In this work, we focus on two such important sparse matrix kernels: Sparse matrix–sparse matrix multiplication (SpGEMM) and sparse matrix–dense matrix multiplication (SpMM). We propose partitioning models for efficient parallelization of these kernels on large-scale distributed systems. Our models aim at reducing and improving communication volume while balancing computational load, which are two vital performance metrics on distributed systems. We show that by exploiting sparsity patterns of the matrices through our models, the parallel performance of SpGEMM and SpMM operations can be significantly improved.

Course

Other identifiers

Book Title

Resource management for big data platforms: algorithms, modelling, and high-performance computing techniques

Degree Discipline

Degree Level

Degree Name

Citation