Cascade-aware partitioning of large graph databases
buir.contributor.author | Demirci, Gündüz Vehbi | |
buir.contributor.author | Aykanat, Cevdet | |
dc.citation.epage | 350 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 329 | en_US |
dc.citation.volumeNumber | 28 | en_US |
dc.contributor.author | Demirci, Gündüz Vehbi | en_US |
dc.contributor.author | Ferhatosmanoğlu, H. | en_US |
dc.contributor.author | Aykanat, Cevdet | en_US |
dc.date.accessioned | 2020-02-03T12:27:56Z | |
dc.date.available | 2020-02-03T12:27:56Z | |
dc.date.issued | 2019 | |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | Graph partitioning is an essential task for scalable data management and analysis. The current partitioning methods utilize the structure of the graph, and the query log if available. Some queries performed on the database may trigger further operations. For example, the query workload of a social network application may contain re-sharing operations in the form of cascades. It is beneficial to include the potential cascades in the graph partitioning objectives. In this paper, we introduce the problem of cascade-aware graph partitioning that aims to minimize the overall cost of communication among parts/servers during cascade processes. We develop a randomized solution that estimates the underlying cascades, and use it as an input for partitioning of large-scale graphs. Experiments on 17 real social networks demonstrate the effectiveness of the proposed solution in terms of the partitioning objectives. | en_US |
dc.description.provenance | Submitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-03T12:27:56Z No. of bitstreams: 1 Cascade_aware_partitioning_of_large_graph_databases.pdf: 754649 bytes, checksum: 808e26f2974ae2af9754702c47c0d575 (MD5) | en |
dc.description.provenance | Made available in DSpace on 2020-02-03T12:27:56Z (GMT). No. of bitstreams: 1 Cascade_aware_partitioning_of_large_graph_databases.pdf: 754649 bytes, checksum: 808e26f2974ae2af9754702c47c0d575 (MD5) Previous issue date: 2019 | en |
dc.identifier.doi | 10.1007/s00778-018-0531-8 | en_US |
dc.identifier.issn | 1066-8888 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/52999 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | https://dx.doi.org/10.1007/s00778-018-0531-8 | en_US |
dc.source.title | The VLDB Journal | en_US |
dc.subject | Graph partitioning | en_US |
dc.subject | Information cascade | en_US |
dc.subject | Propagation models | en_US |
dc.subject | Randomized algorithms | en_US |
dc.subject | Scalability | en_US |
dc.subject | Social networks | en_US |
dc.title | Cascade-aware partitioning of large graph databases | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Cascade_aware_partitioning_of_large_graph_databases.pdf
- Size:
- 736.96 KB
- Format:
- Adobe Portable Document Format
- Description:
- View / Download
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description: