Cascade-aware partitioning of large graph databases

buir.contributor.authorDemirci, Gündüz Vehbi
buir.contributor.authorAykanat, Cevdet
dc.citation.epage350en_US
dc.citation.issueNumber3en_US
dc.citation.spage329en_US
dc.citation.volumeNumber28en_US
dc.contributor.authorDemirci, Gündüz Vehbien_US
dc.contributor.authorFerhatosmanoğlu, H.en_US
dc.contributor.authorAykanat, Cevdeten_US
dc.date.accessioned2020-02-03T12:27:56Z
dc.date.available2020-02-03T12:27:56Z
dc.date.issued2019
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractGraph partitioning is an essential task for scalable data management and analysis. The current partitioning methods utilize the structure of the graph, and the query log if available. Some queries performed on the database may trigger further operations. For example, the query workload of a social network application may contain re-sharing operations in the form of cascades. It is beneficial to include the potential cascades in the graph partitioning objectives. In this paper, we introduce the problem of cascade-aware graph partitioning that aims to minimize the overall cost of communication among parts/servers during cascade processes. We develop a randomized solution that estimates the underlying cascades, and use it as an input for partitioning of large-scale graphs. Experiments on 17 real social networks demonstrate the effectiveness of the proposed solution in terms of the partitioning objectives.en_US
dc.description.provenanceSubmitted by Zeynep Aykut (zeynepay@bilkent.edu.tr) on 2020-02-03T12:27:56Z No. of bitstreams: 1 Cascade_aware_partitioning_of_large_graph_databases.pdf: 754649 bytes, checksum: 808e26f2974ae2af9754702c47c0d575 (MD5)en
dc.description.provenanceMade available in DSpace on 2020-02-03T12:27:56Z (GMT). No. of bitstreams: 1 Cascade_aware_partitioning_of_large_graph_databases.pdf: 754649 bytes, checksum: 808e26f2974ae2af9754702c47c0d575 (MD5) Previous issue date: 2019en
dc.identifier.doi10.1007/s00778-018-0531-8en_US
dc.identifier.issn1066-8888en_US
dc.identifier.urihttp://hdl.handle.net/11693/52999en_US
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttps://dx.doi.org/10.1007/s00778-018-0531-8en_US
dc.source.titleThe VLDB Journalen_US
dc.subjectGraph partitioningen_US
dc.subjectInformation cascadeen_US
dc.subjectPropagation modelsen_US
dc.subjectRandomized algorithmsen_US
dc.subjectScalabilityen_US
dc.subjectSocial networksen_US
dc.titleCascade-aware partitioning of large graph databasesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Cascade_aware_partitioning_of_large_graph_databases.pdf
Size:
736.96 KB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: