Chebyshev polynomials on generalized Julia sets
dc.citation.epage | 393 | en_US |
dc.citation.issueNumber | 3 | en_US |
dc.citation.spage | 387 | en_US |
dc.citation.volumeNumber | 16 | en_US |
dc.contributor.author | Alpan, G. | en_US |
dc.date.accessioned | 2018-04-12T10:56:28Z | |
dc.date.available | 2018-04-12T10:56:28Z | |
dc.date.issued | 2016 | en_US |
dc.department | Department of Mathematics | en_US |
dc.description.abstract | Let (fn)n=1∞ be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let Fm(z) : = (fm∘ fm - 1⋯ ∘ f1) (z) and ρm be the leading coefficient of Fm. It is shown that on the Julia set J(fn), the Chebyshev polynomial of degree deg Fm is of the form Fm(z) / ρm- τm for all m∈ N where τm∈ C. This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994). © 2015, Springer-Verlag Berlin Heidelberg. | en_US |
dc.description.provenance | Made available in DSpace on 2018-04-12T10:56:28Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016 | en |
dc.identifier.doi | 10.1007/s40315-015-0145-8 | en_US |
dc.identifier.eissn | 2195-3724 | |
dc.identifier.issn | 1617-9447 | |
dc.identifier.uri | http://hdl.handle.net/11693/36883 | |
dc.language.iso | English | en_US |
dc.publisher | Springer | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1007/s40315-015-0145-8 | en_US |
dc.source.title | Computational Methods and Function Theory | en_US |
dc.subject | Chebyshev polynomials | en_US |
dc.subject | Extremal polynomials | en_US |
dc.subject | Julia sets | en_US |
dc.subject | Widom factors | en_US |
dc.title | Chebyshev polynomials on generalized Julia sets | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Chebyshev Polynomials on Generalized Julia Sets.pdf
- Size:
- 408.92 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Printable Version