Chebyshev polynomials on generalized Julia sets

dc.citation.epage393en_US
dc.citation.issueNumber3en_US
dc.citation.spage387en_US
dc.citation.volumeNumber16en_US
dc.contributor.authorAlpan, G.en_US
dc.date.accessioned2018-04-12T10:56:28Z
dc.date.available2018-04-12T10:56:28Z
dc.date.issued2016en_US
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractLet (fn)n=1∞ be a sequence of non-linear polynomials satisfying some mild conditions. Furthermore, let Fm(z) : = (fm∘ fm - 1⋯ ∘ f1) (z) and ρm be the leading coefficient of Fm. It is shown that on the Julia set J(fn), the Chebyshev polynomial of degree deg Fm is of the form Fm(z) / ρm- τm for all m∈ N where τm∈ C. This generalizes the result obtained for autonomous Julia sets in Kamo and Borodin (Mosc. Univ. Math. Bull. 49:44–45, 1994). © 2015, Springer-Verlag Berlin Heidelberg.en_US
dc.description.provenanceMade available in DSpace on 2018-04-12T10:56:28Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 179475 bytes, checksum: ea0bedeb05ac9ccfb983c327e155f0c2 (MD5) Previous issue date: 2016en
dc.identifier.doi10.1007/s40315-015-0145-8en_US
dc.identifier.eissn2195-3724
dc.identifier.issn1617-9447
dc.identifier.urihttp://hdl.handle.net/11693/36883
dc.language.isoEnglishen_US
dc.publisherSpringeren_US
dc.relation.isversionofhttp://dx.doi.org/10.1007/s40315-015-0145-8en_US
dc.source.titleComputational Methods and Function Theoryen_US
dc.subjectChebyshev polynomialsen_US
dc.subjectExtremal polynomialsen_US
dc.subjectJulia setsen_US
dc.subjectWidom factorsen_US
dc.titleChebyshev polynomials on generalized Julia setsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Chebyshev Polynomials on Generalized Julia Sets.pdf
Size:
408.92 KB
Format:
Adobe Portable Document Format
Description:
Full Printable Version