New insights on the single machine total tardiness problem

dc.citation.epage89en_US
dc.citation.issueNumber1en_US
dc.citation.spage82en_US
dc.citation.volumeNumber48en_US
dc.contributor.authorTansel, B. C.en_US
dc.contributor.authorSabuncuoğlu, İ.en_US
dc.date.accessioned2016-02-08T10:49:02Z
dc.date.available2016-02-08T10:49:02Z
dc.date.issued1997en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractVirtually all algorithmic studies on the single machine total tardiness problem use Emmons' theorems that establish precedence relations between job pairs. In this paper, we investigate these theorems with a geometric viewpoint. This approach provides a compact way of representing Emmons' theorems and promotes better insights into dominance properties. We use these insights to differentiate between certain classes of easy and hard instances.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T10:49:02Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 1997en
dc.identifier.doi10.1057/palgrave.jors.2600321en_US
dc.identifier.issn0160-5682
dc.identifier.urihttp://hdl.handle.net/11693/25685
dc.language.isoEnglishen_US
dc.publisherPalgrave Macmillanen_US
dc.relation.isversionofhttps://doi.org/10.1057/palgrave.jors.2600321en_US
dc.source.titleJournal of the Operational Research Societyen_US
dc.subjectSingle machine schedulingen_US
dc.subjectTardinessen_US
dc.subjectAlgorithmsen_US
dc.subjectComputational complexityen_US
dc.subjectDynamic programmingen_US
dc.subjectHeuristic methodsen_US
dc.subjectMachineryen_US
dc.subjectOptimizationen_US
dc.subjectSingle machine schedulingen_US
dc.subjectSingle machine total tardiness problemen_US
dc.subjectSchedulingen_US
dc.titleNew insights on the single machine total tardiness problemen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
New_insights_on_the_single_machine_total_tardiness_problem.pdf
Size:
298.65 KB
Format:
Adobe Portable Document Format
Description:
Full printable version