Junction characteristics and magnetic field dependencies of low noise step edge junction Rf-SQUIDs for unshielded applications

Date

2003-06

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

IEEE Transactions on Applied Superconductivity

Print ISSN

1051-8223

Electronic ISSN

Publisher

IEEE

Volume

13

Issue

2

Pages

833 - 836

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
2
views
10
downloads

Series

Abstract

Step edge grain boundary (GB) junctions and rf-SQUIDs have been made using pulsed laser deposited Y-Ba-Cu-O films on crystalline LaAlO3 substrates. The steps were developed using various ion-beam etching processes resulting in sharp and ramp type step structures. Sharp step based GB junctions showed behavior of serial junctions with resistively shunted junction (RSJ)-like I-V characteristics. The ramped type step structures resulted in relatively high critical current, Ic, junctions and noisy SQUIDs. The sharp steps resulted in low noise rf-SQUIDs with a noise level below 140 fT/Hz12/ down to few Hz at 77 K while measured with conventional tank circuits. The Ic of the junctions and hence the operating temperature range of the SQUIDs made using sharp steps was controlled by both the step height and the junction widths. The junction properties of the SQUIDs were also characterized showing RSJ-like characteristics and magnetic field sensitivities correlated to that of the SQUIDs. Two major low and high background magnetic field sensitivities have been observed for our step edge junctions and the SQUIDs made on sharp steps. High quality step edge junctions with low magnetic field sensitivities made on clean sharp steps resulted in low 1/f noise rf-SQUIDs proper for applications in unshielded environment.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)