Multi-target regression via non-linear output structure learning
Date
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
The problem of simultaneously predicting multiple real-valued outputs using a shared set of input variables is known as multi-target regression and has attracted considerable interest in the past couple of years. The dominant approach in the literature for multi-target regression is to capture the dependencies between the outputs through a linear model and express it as an output mixing matrix. This modelling formalism, however, is too simplistic in real-world problems where the output variables are related to one another in a more complex and non-linear fashion. To address this problem, in this study, we propose a structural modelling approach where the correlations between output variables are modelled using a non-linear approach. In particular, we pose the multi-target regression problem as one of vector-valued composition function learning in the reproducing kernel Hilbert space and propose a non-linear structure learning approach to capture the relationship between the outputs via an output kernel. By virtue of using a non-linear output kernel function, the proposed approach can better discover non-linear dependencies among targets for improved prediction performance. An extensive evaluation conducted on different databases reveals the benefits of the proposed multi-target regression technique against the baseline and the state-of-the-art methods