Distributed Control of PEV Charging Based on Energy Demand Forecast
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Citation Stats
Attention Stats
Usage Stats
views
downloads
Series
Abstract
This paper presents a new distributed smart charging strategy for grid integration of plug-in electric vehicles (PEVs). The main goal is to smooth the daily grid load profile while ensuring that each PEV has a desired state of charge level at the time of departure. Communication and computational overhead, and PEV user privacy are also considered during the development of the proposed strategy. It consists of two stages: 1) an offline process to estimate a reference operating power level based on the forecasted mobility energy demand and base loading profile, and 2) a real-time process to determine the charging power for each PEV so that the aggregated load tracks the reference loading level. Tests are carried out both on primary and secondary distribution networks for different heuristic charging scenarios and PEV penetration levels. Results are compared to that of the optimal solution and other state-of-the-art techniques in terms of variance and peak values, and shown to be competitive. Finally, a real vehicle test implementation is done using a commercial-of-the-shelf charging station and an electric vehicle.