Artificial intelligence-based hybrid anomaly detection and clinical decision support techniques for automated detection of cardiovascular diseases and Covid-19

buir.advisorArıkan, Orhan
dc.contributor.authorTerzi, Merve Begüm
dc.date.accessioned2023-10-25T12:43:48Z
dc.date.available2023-10-25T12:43:48Z
dc.date.copyright2023-10
dc.date.issued2023-10
dc.date.submitted2023-10-25
dc.departmentDepartment of Electrical and Electronics Engineering
dc.descriptionCataloged from PDF version of article.
dc.descriptionThesis (Ph.D.): Bilkent University, Department of Electrical and Electronics Engineering, İhsan Doğramacı Bilkent University, 2023.
dc.descriptionIncludes bibliographical references (leaves 153-177).
dc.description.abstractCoronary artery diseases are the leading cause of death worldwide, and early diagnosis is crucial for timely treatment. To address this, we present a novel automated arti cial intelligence-based hybrid anomaly detection technique com posed of various signal processing, feature extraction, supervised, and unsuper vised machine learning methods. By jointly and simultaneously analyzing 12-lead electrocardiogram (ECG) and cardiac sympathetic nerve activity (CSNA) data, the automated arti cial intelligence-based hybrid anomaly detection technique performs fast, early, and accurate diagnosis of coronary artery diseases. To develop and evaluate the proposed automated arti cial intelligence-based hybrid anomaly detection technique, we utilized the fully labeled STAFF III and PTBD databases, which contain 12-lead wideband raw recordings non invasively acquired from 260 subjects. Using the wideband raw recordings in these databases, we developed a signal processing technique that simultaneously detects the 12-lead ECG and CSNA signals of all subjects. Subsequently, using the pre-processed 12-lead ECG and CSNA signals, we developed a time-domain feature extraction technique that extracts the statistical CSNA and ECG features critical for the reliable diagnosis of coronary artery diseases. Using the extracted discriminative features, we developed a supervised classi cation technique based on arti cial neural networks that simultaneously detects anomalies in the 12-lead ECG and CSNA data. Furthermore, we developed an unsupervised clustering technique based on the Gaussian mixture model and Neyman-Pearson criterion that performs robust detection of the outliers corresponding to coronary artery diseases. By using the automated arti cial intelligence-based hybrid anomaly detection technique, we have demonstrated a signi cant association between the increase in the amplitude of CSNA signal and anomalies in ECG signal during coronary artery diseases. The automated arti cial intelligence-based hybrid anomaly de tection technique performed highly reliable detection of coronary artery diseases with a sensitivity of 98.48%, speci city of 97.73%, accuracy of 98.11%, positive predictive value (PPV) of 97.74%, negative predictive value (NPV) of 98.47%, and F1-score of 98.11%. Hence, the arti cial intelligence-based hybrid anomaly detection technique has superior performance compared to the gold standard diagnostic test ECG in diagnosing coronary artery diseases. Additionally, it out performed other techniques developed in this study that separately utilize either only CSNA data or only ECG data. Therefore, it signi cantly increases the detec tion performance of coronary artery diseases by taking advantage of the diversity in di erent data types and leveraging their strengths. Furthermore, its perfor mance is comparatively better than that of most previously proposed machine and deep learning methods that exclusively used ECG data to diagnose or clas sify coronary artery diseases. It also has a very short implementation time, which is highly desirable for real-time detection of coronary artery diseases in clinical practice. The proposed automated arti cial intelligence-based hybrid anomaly detection technique may serve as an e cient decision-support system to increase physicians' success in achieving fast, early, and accurate diagnosis of coronary artery diseases. It may be highly bene cial and valuable, particularly for asymptomatic coronary artery disease patients, for whom the diagnostic information provided by ECG alone is not su cient to reliably diagnose the disease. Hence, it may signi cantly improve patient outcomes, enable timely treatments, and reduce the mortality associated with cardiovascular diseases. Secondly, we propose a new automated arti cial intelligence-based hybrid clinical decision support technique that jointly analyzes reverse transcriptase polymerase chain reaction (RT-PCR) curves, thorax computed tomography im ages, and laboratory data to perform fast and accurate diagnosis of Coronavirus disease 2019 (COVID-19). For this purpose, we retrospectively created the fully labeled Ankara University Faculty of Medicine COVID-19 (AUFM-CoV) database, which contains a wide variety of medical data, including RT-PCR curves, thorax computed tomogra phy images, and laboratory data. The AUFM-CoV is the most comprehensive database that includes thorax computed tomography images of COVID-19 pneu monia (CVP), other viral and bacterial pneumonias (VBP), and parenchymal lung diseases (PLD), all of which present signi cant challenges for di erential diagnosis. We developed a new automated arti cial intelligence-based hybrid clinical de cision support technique, which is an ensemble learning technique consisting of two preprocessing methods, long short-term memory network-based deep learning method, convolutional neural network-based deep learning method, and arti cial neural network-based machine learning method. By jointly analyzing RT-PCR curves, thorax computed tomography images, and laboratory data, the proposed automated arti cial intelligence-based hybrid clinical decision support technique bene ts from the diversity in di erent data types that are critical for the reliable detection of COVID-19 and leverages their strengths. The multi-class classi cation performance results of the proposed convolu tional neural network-based deep learning method on the AUFM-CoV database showed that it achieved highly reliable detection of COVID-19 with a sensitivity of 91.9%, speci city of 92.5%, precision of 80.4%, and F1-score of 86%. There fore, it outperformed thorax computed tomography in terms of the speci city of COVID-19 diagnosis. Moreover, the convolutional neural network-based deep learning method has been shown to very successfully distinguish COVID-19 pneumonia (CVP) from other viral and bacterial pneumonias (VBP) and parenchymal lung diseases (PLD), which exhibit very similar radiological ndings. Therefore, it has great potential to be successfully used in the di erential diagnosis of pulmonary dis eases containing ground-glass opacities. The binary classi cation performance results of the proposed convolutional neural network-based deep learning method showed that it achieved a sensitivity of 91.5%, speci city of 94.8%, precision of 85.6%, and F1-score of 88.4% in diagnosing COVID-19. Hence, it has compara ble sensitivity to thorax computed tomography in diagnosing COVID-19. Additionally, the binary classi cation performance results of the proposed long short-term memory network-based deep learning method on the AUFM-CoV database showed that it performed highly reliable detection of COVID-19 with a sensitivity of 96.6%, speci city of 99.2%, precision of 98.1%, and F1-score of 97.3%. Thus, it outperformed the gold standard RT-PCR test in terms of the sensitivity of COVID-19 diagnosis Furthermore, the multi-class classi cation performance results of the proposed automated arti cial intelligence-based hybrid clinical decision support technique on the AUFM-CoV database showed that it diagnosed COVID-19 with a sen sitivity of 66.3%, speci city of 94.9%, precision of 80%, and F1-score of 73%. Hence, it has been shown to very successfully perform the di erential diagnosis of COVID-19 pneumonia (CVP) and other pneumonias. The binary classi cation performance results of the automated arti cial intelligence-based hybrid clinical decision support technique revealed that it diagnosed COVID-19 with a sensi tivity of 90%, speci city of 92.8%, precision of 91.8%, and F1-score of 90.9%. Therefore, it exhibits superior sensitivity and speci city compared to laboratory data in COVID-19 diagnosis. The performance results of the proposed automated arti cial intelligence-based hybrid clinical decision support technique on the AUFM-CoV database demon strate its ability to provide highly reliable diagnosis of COVID-19 by jointly ana lyzing RT-PCR data, thorax computed tomography images, and laboratory data. Consequently, it may signi cantly increase the success of physicians in diagnosing COVID-19, assist them in rapidly isolating and treating COVID-19 patients, and reduce their workload in daily clinical practice.
dc.description.degreePh.D.
dc.description.statementofresponsibilityby Merve Begüm Terzi
dc.embargo.release2024-04-13
dc.format.extentxxiv, 177 leaves : illustrations, charts ; 30 cm.
dc.identifier.itemidB162558
dc.identifier.urihttps://hdl.handle.net/11693/113961
dc.language.isoEnglish
dc.publisherBilkent University
dc.rightsinfo:eu-repo/semantics/openAccess
dc.subjectBig data
dc.subjectArtificial intelligence
dc.subjectMachine learning
dc.subjectDeep learning
dc.subjectTransfer learning
dc.subjectEnsemble learning
dc.subjectComputer-aided diagnosis
dc.subjectSignal processing
dc.subjectImage processing
dc.subjectFeature extraction
dc.subjectClassification
dc.subjectClustering
dc.subjectConvolutional neural network
dc.subjectRecurrent neural network
dc.subjectLong short-term memory
dc.subjectAnomaly detection
dc.subjectGaussian mixture model
dc.subjectSynthetic minority oversampling technique (SMOTE)
dc.subjectNeyman-Pearson hypothesis testing
dc.subjectCOVID-19
dc.subjectRadiology
dc.subjectComputed tomography
dc.titleArtificial intelligence-based hybrid anomaly detection and clinical decision support techniques for automated detection of cardiovascular diseases and Covid-19
dc.title.alternativeYapay zekâ-tabanlı hibrit anomali tespit ve klinik karar destek teknikleri ile kardiyovasküler hastalıkların ve Covid-19'un otomatik tespiti
dc.typeThesis
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
b162558.pdf
Size:
5.2 MB
Format:
Adobe Portable Document Format
License bundle
Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
2.01 KB
Format:
Item-specific license agreed upon to submission
Description: