Convex hull results for the warehouse problem

buir.contributor.authorYaman, Hande
dc.citation.epage120en_US
dc.citation.spage108en_US
dc.citation.volumeNumber30en_US
dc.contributor.authorWolsey, L. A.en_US
dc.contributor.authorYaman, Handeen_US
dc.date.accessioned2019-02-21T16:01:30Z
dc.date.available2019-02-21T16:01:30Z
dc.date.issued2018en_US
dc.departmentDepartment of Industrial Engineeringen_US
dc.description.abstractGiven an initial stock and a capacitated warehouse, the warehouse problem aims to decide when to sell and purchase to maximize profit. This problem is common in revenue management and energy storage. We extend this problem by incorporating fixed costs and provide convex hull descriptions as well as tight compact extended formulations for several variants. For this purpose, we first derive unit flow formulations based on characterizations of extreme points and then project out the additional variables using Fourier-Motzkin elimination. It turns out that the nontrivial inequalities are flow cover inequalities for some single node flow set relaxations.
dc.embargo.release2020-11-01en_US
dc.identifier.doi10.1016/j.disopt.2018.06.002
dc.identifier.issn1572-5286
dc.identifier.urihttp://hdl.handle.net/11693/49858
dc.language.isoEnglish
dc.publisherElsevier B.V.
dc.relation.isversionofhttps://doi.org/10.1016/j.disopt.2018.06.002
dc.source.titleDiscrete Optimizationen_US
dc.subjectConvex hullen_US
dc.subjectExtended formulationen_US
dc.subjectFlow cover inequalitiesen_US
dc.subjectFourier-Motzkin eliminationen_US
dc.subjectSingle node flow seten_US
dc.subjectWarehouse problemen_US
dc.titleConvex hull results for the warehouse problemen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Convex_hull_results_for_the_warehouse_problem.pdf
Size:
694.32 KB
Format:
Adobe Portable Document Format
Description:
Full printable version