Obstructions for constructing equivariant fibrations

Date

2012

Authors

Ilhan, A.G.

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Algebraic and Geometric Topology

Print ISSN

14722747

Electronic ISSN

Publisher

Volume

12

Issue

3

Pages

1313 - 1330

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
4
downloads

Series

Abstract

Let G be a finite group and H be a family of subgroups of G which is closed under conjugation and taking subgroups. Let B be a G-CW-complex whose isotropy subgroups are in H and let F = {F H} H e{open}H be a compatible family of H -spaces. A G -fibration over B with the fiber type F = {F H} H e{open}H is a G -equivariant fibration p: E → B where p -1(b) is G b -homotopy equivalent to F Gb for each b e{open} B. In this paper, we develop an obstruction theory for constructing G-fibrations with the fiber type F over a given G -CW-complex B. Constructing G -fibrations with a prescribed fiber type F is an important step in the construction of free G -actions on finite CW-complexes which are homotopy equivalent to a product of spheres.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)