Efficient HLS-based implementation of Sparse Matrix-Vector Multiplication on FPGA

buir.advisorÖzdal, M. Mustafa
dc.contributor.authorKara, Mert
dc.date.accessioned2022-02-18T12:53:14Z
dc.date.available2022-02-18T12:53:14Z
dc.date.copyright2021-12
dc.date.issued2021-12
dc.date.submitted2022-02-03
dc.descriptionCataloged from PDF version of article.en_US
dc.descriptionThesis (Master's): Bilkent University, Department of Computer Engineering, İhsan Doğramacı Bilkent University, 2022.en_US
dc.descriptionIncludes bibliographical references (leaves 34-38).en_US
dc.description.abstractSparse Matrix-Vector Multiplication (SpMV) is an important core kernel used in many scientific applications. SpMV is a communication-bound algorithm that suffers poorly from spatial locality. It exhibits low computation-tocommunication ratio due to its inherent irregular memory access patterns. This causes a significant waste of DRAM traffic and poor bandwidth utilization. Recently published Propagation Blocking (PB) methodology tackles this communication bottleneck by dividing the execution into binning and accumulation phases, allowing better locality in the cost of additional memory accesses. Building upon PB approach, in this study, we design two FPGA kernels for binning and accumulation phases using high-level synthesis, run together sequentially. Experimental results and projections on larger data show that our design can provide up to 7.9x speedup over the CPU baseline implementation.en_US
dc.description.provenanceSubmitted by Betül Özen (ozen@bilkent.edu.tr) on 2022-02-18T12:53:14Z No. of bitstreams: 1 B160765.pdf: 678013 bytes, checksum: 07db35e01e7f7339068a16d871fd9630 (MD5)en
dc.description.provenanceMade available in DSpace on 2022-02-18T12:53:14Z (GMT). No. of bitstreams: 1 B160765.pdf: 678013 bytes, checksum: 07db35e01e7f7339068a16d871fd9630 (MD5) Previous issue date: 2021-12en
dc.description.statementofresponsibilityby Mert Karaen_US
dc.format.extentix, 38 leaves : charts ; 30 cm.en_US
dc.identifier.itemidB160765
dc.identifier.urihttp://hdl.handle.net/11693/77517
dc.language.isoEnglishen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFPGAen_US
dc.subjectAcceleratoren_US
dc.subjectSpMVen_US
dc.subjectHLSen_US
dc.titleEfficient HLS-based implementation of Sparse Matrix-Vector Multiplication on FPGAen_US
dc.title.alternativeFPGA üzerinde Seyrek Matris- Vektör Çarpımının verimli HLS-tabanlı uygulamasıen_US
dc.typeThesisen_US
thesis.degree.disciplineComputer Engineering
thesis.degree.grantorBilkent University
thesis.degree.levelMaster's
thesis.degree.nameMS (Master of Science)

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
B160765.pdf
Size:
662.12 KB
Format:
Adobe Portable Document Format
Description:
Full printable version

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.69 KB
Format:
Item-specific license agreed upon to submission
Description: