Profile matching across online social networks

Date

2020

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Lecture Notes in Computer Science

Print ISSN

0302-9743

Electronic ISSN

Publisher

Springer Science and Business Media Deutschland GmbH

Volume

12282 LNCS

Issue

Pages

54 - 70

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
0
views
90
downloads

Series

Abstract

In this work, we study the privacy risk due to profile matching across online social networks (OSNs), in which anonymous profiles of OSN users are matched to their real identities using auxiliary information about them. We consider different attributes that are publicly shared by users. Such attributes include both strong identifiers such as user name and weak identifiers such as interest or sentiment variation between different posts of a user in different platforms. We study the effect of using different combinations of these attributes to profile matching in order to show the privacy threat in an extensive way. The proposed framework mainly relies on machine learning techniques and optimization algorithms. We evaluate the proposed framework on three datasets (Twitter - Foursquare, Google+ - Twitter, and Flickr) and show how profiles of the users in different OSNs can be matched with high probability by using the publicly shared attributes and/or the underlying graphical structure of the OSNs. We also show that the proposed framework notably provides higher precision values compared to state-of-the-art that relies on machine learning techniques. We believe that this work will be a valuable step to build a tool for the OSN users to understand their privacy risks due to their public sharings.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)