Enhancing reliability in semantic communication: a stochastic approach to semantic-graph modeling
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
Semantic communication is expected to play a critical role in reducing traffic load in future intelligent large-scale sensor networks. With advances in Machine Learning (ML) and Deep Learning (DL) techniques, design of semantically-aware systems has become feasible in recent years. This thesis focuses on improving the reliability of the semantic information represented in a graph-based language that was previously developed. Inaccuracies in the representation of the semantic information can arise due to multiple factors, such as algorithmic shortcomings or sensory errors, deteriorating the performance of the semantic extractor. This thesis aims to model the temporal evolution of semantic information, represented using the graph language, to enhance its reliability. Each unique graph configuration is treated as a distinct state, leading to a Hidden Semi-Markov Model (HSMM) defined over the state space of the graph configurations. The HSMM formulation enables the integration of prior knowledge on the semantic signal into the graph sequences, enhancing the accuracy in identifying semantic innovations. Within the HSMM framework, algorithms designed for graph smoothing, semantic information fusion, and model learning are introduced. The efficacy of these algorithms in improving the reliability of the extracted semantic-graphs is demonstrated through simulations and video streams generated in the CARLA simulation environment.