Local comparability of exchange ideals

buir.contributor.authorKurtulmaz, Yosum
dc.citation.epage11en_US
dc.citation.spage1en_US
dc.citation.volumeNumber25en_US
dc.contributor.authorKöse, H.en_US
dc.contributor.authorKurtulmaz, Yosumen_US
dc.contributor.authorChen, H.en_US
dc.date.accessioned2020-02-05T07:38:44Z
dc.date.available2020-02-05T07:38:44Z
dc.date.issued2019
dc.departmentDepartment of Mathematicsen_US
dc.description.abstractAn exchange ideal I of a ring R is locally comparable if for every regular x ∈ I there exists a right or left invertible u ∈ 1+I such that x = xux. We prove that every matrix extension of an exchange locally comparable ideal is locally comparable. We thereby prove that every square regular matrix over such ideal admits a diagonal reduction.en_US
dc.identifier.doi10.24330/ieja.504095en_US
dc.identifier.issn1306-6048
dc.identifier.urihttp://hdl.handle.net/11693/53078
dc.language.isoEnglishen_US
dc.publisherHacettepe Universityen_US
dc.relation.isversionofhttps://dx.doi.org/10.24330/ieja.504095en_US
dc.source.titleInternational Electronic Journal of Algebraen_US
dc.subjectDiagonal reductionen_US
dc.subjectExchange idealen_US
dc.subjectLocally comparable idealen_US
dc.subjectMatrix extensionen_US
dc.titleLocal comparability of exchange idealsen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Local_comparability_of_exchange_ideals.pdf
Size:
240.5 KB
Format:
Adobe Portable Document Format
Description:
View / Download

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: