Active lubrication interfaces with tunable micro-textures

Available
The embargo period has ended, and this item is now available.

Date

2023-07

Editor(s)

Advisor

Temizer, İlker

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Print ISSN

Electronic ISSN

Publisher

Volume

Issue

Pages

Language

English

Journal Title

Journal ISSN

Volume Title

Series

Abstract

This thesis investigates a homogenization-based space-time optimization framework in the context of hydrodynamic lubrication in order to design micro-textures which can be actively controlled through external stimuli. The response at the interface is established via the Reynolds equation to describe the physics of the lubrication for a small film thickness. Subsequently, the interface is subjected to multiscale analysis and effective macroscopic parameters are derived via homogenization method. In order to calculate the macroscopic parameters, Finite Element (FE) formulation is employed and the implementation of the parameters in the in-house FE code is demonstrated. For the suboptimality problem due to typically employed fixed unit cell in FE analysis, a geometry optimization scheme is developed. Thereafter, a sensitivity based topology optimization framework is introduced with the aim of identifying the spatial distribution and temporal variation of the micro-texture, and the shape of the unit cell which together help achieve the targeted lubrication response. The performance of the employed framework is assessed through objectives which ultimately determine the macroscopic flux at the interface as well as the frictional traction that is associated with the macroscopic dissipation at the interface. Finally, three-dimensional realizations are constructed for active micro-textures by adopting a readily deployable experimental architecture.

Course

Other identifiers

Book Title

Degree Discipline

Mechanical Engineering

Degree Level

Master's

Degree Name

MS (Master of Science)

Citation

Published Version (Please cite this version)