Unsupervised segmentation and classification of cervical cell images

dc.citation.epage4168en_US
dc.citation.issueNumber12en_US
dc.citation.spage4151en_US
dc.citation.volumeNumber45en_US
dc.contributor.authorGençtav, A.en_US
dc.contributor.authorAksoy, S.en_US
dc.contributor.authorÖnder, S.en_US
dc.date.accessioned2015-07-28T12:04:30Z
dc.date.available2015-07-28T12:04:30Z
dc.date.issued2012-12en_US
dc.departmentDepartment of Computer Engineeringen_US
dc.description.abstractThe Pap smear test is a manual screening procedure that is used to detect precancerous changes in cervical cells based on color and shape properties of their nuclei and cytoplasms. Automating this procedure is still an open problem due to the complexities of cell structures. In this paper, we propose an unsupervised approach for the segmentation and classification of cervical cells. The segmentation process involves automatic thresholding to separate the cell regions from the background, a multi-scale hierarchical segmentation algorithm to partition these regions based on homogeneity and circularity, a binary classifier to finalize the separation of nuclei from cytoplasm within the cell regions. Classification is posed as a grouping problem by ranking the cells based on their feature characteristics modeling abnormality degrees. The proposed procedure constructs a tree using hierarchical clustering, then arranges the cells in a linear order by using an optimal leaf ordering algorithm that maximizes the similarity of adjacent leaves without any requirement for training examples or parameter adjustment. Performance evaluation using two data sets show the effectiveness of the proposed approach in images having inconsistent staining, poor contrast, overlapping cells. © 2012 Elsevier Ltd.en_US
dc.description.provenanceMade available in DSpace on 2015-07-28T12:04:30Z (GMT). No. of bitstreams: 1 10.1016-j.patcog.2012.05.006.pdf: 4067340 bytes, checksum: da7b8cf49bba0968a8b8b78cc3208a1d (MD5)en
dc.identifier.doi10.1016/j.patcog.2012.05.006en_US
dc.identifier.issn0031-3203
dc.identifier.urihttp://hdl.handle.net/11693/13059
dc.language.isoEnglishen_US
dc.publisherElsevier BVen_US
dc.relation.isversionofhttp://dx.doi.org/10.1016/j.patcog.2012.05.006en_US
dc.source.titlePattern Recognitionen_US
dc.subjectPap smear testen_US
dc.subjectCell gradingen_US
dc.subjectAutomatic thresholdingen_US
dc.subjectHierarchical segmentationen_US
dc.subjectMulti - scale segmentationen_US
dc.subjectHierarchical clusteringen_US
dc.subjectRankingen_US
dc.subjectOptimal leaf orderingen_US
dc.titleUnsupervised segmentation and classification of cervical cell imagesen_US
dc.typeArticleen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
10.1016-j.patcog.2012.05.006.pdf
Size:
3.88 MB
Format:
Adobe Portable Document Format