Spectrum sensing via restricted neyman-pearson approach in the presence of non-Gaussian noise

buir.contributor.authorGezici, Sinan
dc.citation.epage1732en_US
dc.citation.spage1728en_US
dc.contributor.authorTurgut, Esmaen_US
dc.contributor.authorGezici, Sinanen_US
dc.coverage.spatialZagreb, Croatiaen_US
dc.date.accessioned2016-02-08T12:04:14Z
dc.date.available2016-02-08T12:04:14Z
dc.date.issued2013en_US
dc.departmentDepartment of Electrical and Electronics Engineeringen_US
dc.descriptionDate of Conference: 1-4 July 2013en_US
dc.description.abstractIn this paper, spectrum sensing in cognitive radio systems is studied for non-Gaussian channels in the presence of prior distribution uncertainty. In most practical cases, some amount of prior information about signals of primary users is available to secondary users but that information is never perfect. In order to design optimal spectrum sensing algorithms in such cases, we propose to employ the restricted Neyman-Pearson (NP) approach, which maximizes the average detection probability under constraints on the worst-case detection and false-alarm probabilities. We derive a restricted NP based spectrum sensing algorithm for additive Gaussian mixture noise channels, and compare its performance against the generalized likelihood ratio test (GLRT) and the energy detector. Simulation results show that the proposed spectrum sensing algorithm provides improvements over the other approaches in terms of minimum (worst-case) and/or average detection probabilities. © 2013 IEEE.en_US
dc.description.provenanceMade available in DSpace on 2016-02-08T12:04:14Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2013en
dc.identifier.doi10.1109/EUROCON.2013.6625210en_US
dc.identifier.urihttp://hdl.handle.net/11693/27897
dc.language.isoEnglishen_US
dc.publisherIEEEen_US
dc.relation.isversionofhttp://dx.doi.org/10.1109/EUROCON.2013.6625210en_US
dc.source.titleEurocon 2013en_US
dc.subjectCognitive radioen_US
dc.subjectDetectionen_US
dc.subjectGaussian mixtureen_US
dc.subjectLikelihood ratioen_US
dc.subjectNeyman-Pearsonen_US
dc.subjectSpectrum sensingen_US
dc.subjectDetection probabilitiesen_US
dc.subjectGaussian mixture noiseen_US
dc.subjectGaussian mixturesen_US
dc.subjectGeneralized likelihood-ratio testsen_US
dc.subjectLikelihood ratiosen_US
dc.subjectNeyman-pearsonen_US
dc.subjectNon Gaussian channelsen_US
dc.subjectSpectrum sensingen_US
dc.subjectAlgorithmsen_US
dc.subjectCognitive radioen_US
dc.subjectError detectionen_US
dc.subjectProbabilityen_US
dc.subjectRadio systemsen_US
dc.subjectTelecommunicationen_US
dc.subjectGaussian noise (electronic)en_US
dc.titleSpectrum sensing via restricted neyman-pearson approach in the presence of non-Gaussian noiseen_US
dc.typeConference Paperen_US

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Spectrum sensing via restricted neyman-pearson approach in the presence of non-Gaussian noise.pdf
Size:
547.57 KB
Format:
Adobe Portable Document Format
Description:
Full printable version