Tunable plexcitonic nanoparticles: a model system for studying plasmon-exciton interaction from the weak to the ultrastrong coupling regime

dc.citation.epage2016en_US
dc.citation.issueNumber11en_US
dc.citation.spage2010en_US
dc.citation.volumeNumber3en_US
dc.contributor.authorBalci, S.en_US
dc.contributor.authorKucukoz, B.en_US
dc.contributor.authorBalci, O.en_US
dc.contributor.authorKaratay, A.en_US
dc.contributor.authorKocabas, C.en_US
dc.contributor.authorYaglioglu, G.en_US
dc.date.accessioned2018-04-12T10:50:29Z
dc.date.available2018-04-12T10:50:29Z
dc.date.issued2016en_US
dc.departmentDepartment of Physicsen_US
dc.description.abstractControlling the number of dye molecules on metallic nanoparticles, which in turn affects the magnitude of Rabi splitting energy, is crucial for obtaining hybrid metal core–organic shell nanoparticles with tunable optical properties in the visible spectrum since the magnitude of the Rabi splitting energy directly determines the strength of the coupling between plasmonic nanoparticles and dye molecules. In this work, we present a new method for the synthesis of plexcitonic nanoparticles, and thus we are able to control the number of dye molecules self-assembled on Ag nanoprisms (Ag NPs) by adjusting the concentration of dye molecules used in the synthesis. Indeed, individual dye molecules self-assemble into J-aggregates on Ag NPs. Thus, in the finite-element simulations and experimental data of the hybrid metal organic nanoparticles, we observed a transition from weak coupling to the ultrastrong coupling regime. Besides, ultrafast energy transfer between plasmonic nanoparticles and excitonic aggregated dye molecules has been extensively studied as a function of Rabi splitting energy. We observe that the lifetime of the polariton states increases with the coupling strength and the upper polaritons are short-lived, whereas the lower polaritons are long-lived. Hybrid metal–organic nanoparticles presented in this study (i) have tunable Rabi splitting energies, (ii) are easy to prepare in large quantities in aqueous medium, (iii) can be uniformly assembled on solid substrates, (iv) have resonance frequencies in the visible spectrum, and (v) have small mode volume, thus making them an excellent model system for studying light–matter interaction at nanoscale dimensions from the weak to ultrastrong coupling regime.en_US
dc.identifier.doi10.1021/acsphotonics.6b00498en_US
dc.identifier.issn2330-4022
dc.identifier.urihttp://hdl.handle.net/11693/36715
dc.language.isoEnglishen_US
dc.publisherAmerican Chemical Societyen_US
dc.relation.isversionofhttp://dx.doi.org/10.1021/acsphotonics.6b00498en_US
dc.source.titleACS Photonicsen_US
dc.subjectEexcitonsen_US
dc.subjectJ-aggregatesen_US
dc.subjectNanoprismsen_US
dc.subjectPlasmonsen_US
dc.subjectPlexcitonsen_US
dc.subjectRabi splittingen_US
dc.subjectStrong couplingen_US
dc.subjectAggregatesen_US
dc.subjectDielectric waveguidesen_US
dc.subjectEnergy transferen_US
dc.subjectExcitonsen_US
dc.subjectFinite element methoden_US
dc.subjectMetal nanoparticlesen_US
dc.subjectMetalsen_US
dc.subjectMoleculesen_US
dc.subjectNanoparticlesen_US
dc.subjectNanostructuresen_US
dc.subjectOptical propertiesen_US
dc.subjectOrganometallicsen_US
dc.subjectPhononsen_US
dc.subjectPhotonsen_US
dc.subjectPlasmonsen_US
dc.subjectQuantum theoryen_US
dc.subjectSilveren_US
dc.subjectJ aggregatesen_US
dc.subjectNanoprismsen_US
dc.subjectplexcitonsen_US
dc.subjectRabi splittingen_US
dc.subjectStrong couplingen_US
dc.subjectSynthesis (chemical)en_US
dc.titleTunable plexcitonic nanoparticles: a model system for studying plasmon-exciton interaction from the weak to the ultrastrong coupling regimeen_US
dc.typeArticleen_US
Files
Original bundle
Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Tunable Plexcitonic Nanoparticles A Model System for Studying Plasmon-Exciton Interaction from the Weak to the Ultrastrong Coupling Regime.pdf
Size:
2.61 MB
Format:
Adobe Portable Document Format
Description:
Full Printable Version