Statistics of the MLE and Approximate Upper and Lower Bounds-Part 1: Application to TOA Estimation
buir.contributor.author | Gezici, Sinan | |
dc.citation.epage | 5676 | en_US |
dc.citation.issueNumber | 21 | en_US |
dc.citation.spage | 5663 | en_US |
dc.citation.volumeNumber | 62 | en_US |
dc.contributor.author | Mallat, A. | en_US |
dc.contributor.author | Gezici, Sinan | en_US |
dc.contributor.author | Dardari, D. | en_US |
dc.contributor.author | Craeye, C. | en_US |
dc.contributor.author | Vandendorpe, L. | en_US |
dc.date.accessioned | 2015-07-28T12:02:49Z | |
dc.date.available | 2015-07-28T12:02:49Z | |
dc.date.issued | 2014-08 | en_US |
dc.department | Department of Electrical and Electronics Engineering | en_US |
dc.description.abstract | In nonlinear deterministic parameter estimation, the maximum likelihood estimator (MLE) is unable to attain the Cramer-Rao lower bound at low and medium signal-to-noise ratios (SNR) due the threshold and ambiguity phenomena. In order to evaluate the achieved mean-squared-error (MSE) at those SNR levels, we propose new MSE approximations (MSEA) and an approximate upper bound by using the method of interva l estimation (MIE). The mean and the distribution of the MLE ar e approximated as well. The MIE consists in splitting the a priori domain of the unknown parameter into intervals and computin g the statistics of the estimator in each interval. Also, we derive an approximate lower bound (ALB) based on the Taylor series expansion of noise and an ALB family by employing the binary detection principle. The accurateness of the proposed MSEAs and the tightness of the derived approximate bounds 1 are validated by considering the example of time-of-arrival estimation. | en_US |
dc.identifier.doi | 10.1109/TSP.2003.814469 | en_US |
dc.identifier.issn | 1053-587X | |
dc.identifier.uri | http://hdl.handle.net/11693/12741 | |
dc.language.iso | English | en_US |
dc.publisher | IEEE | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1109/TSP.2003.814469 | en_US |
dc.source.title | IEEE Trans on Signal Processing | en_US |
dc.subject | Nonlinear Estimation | en_US |
dc.subject | Threshold And Ambiguity Phenomena | en_US |
dc.subject | Maximum Likelihood Estimator | en_US |
dc.subject | Mean-squared-error | en_US |
dc.subject | Upper And Lowers Bounds | en_US |
dc.subject | Time-of-arrival | en_US |
dc.title | Statistics of the MLE and Approximate Upper and Lower Bounds-Part 1: Application to TOA Estimation | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1