Role of autophagy and evaluation the effects of microRNAs 214, 132, 34c and prorenin receptor in a rat model of focal segmental glomerulosclerosis

Available
The embargo period has ended, and this item is now available.

Date

2021-06-01

Editor(s)

Advisor

Supervisor

Co-Advisor

Co-Supervisor

Instructor

Source Title

Life Sciences

Print ISSN

0024-3205

Electronic ISSN

Publisher

Elsevier

Volume

280

Issue

Pages

1 - 13

Language

English

Journal Title

Journal ISSN

Volume Title

Citation Stats
Attention Stats
Usage Stats
1
views
118
downloads

Series

Abstract

Aims Focal segmental glomerulosclerosis (FSGS) is the common cause of chronic renal disease worldwide. Although there are many etiologic factors which have common theme of podocyte injury conclusive etiology is not clearly understood. In this study, we aimed to explore the role of autophagy in the pathogenesis of podocyte injury, which is the key point in disease progression, and the roles of intrarenal microRNAs and the prorenin receptor (PRR) in the 5/6 nephrectomy and adriamycin nephropathy models of FSGS.

Main methods For experimental FSGS model, 5/6 nephrectomy and adriamycin nephropathy models were created and characterized in adult Sprague Dawley rats. Microarray analysis was performed on FSGS and control groups that was confirmed by q-RT-PCR. Beclin1, LC3B, PRR, ATG7 and ATG5 expression were evaluated by western blotting and immunohistochemistry. Also, Beclin1 and PRR expression were measured by ELISA. Glomerular podocyte isolation was performed and autophagic activity was evaluated in podocytes before and after transfection with miRNA mimic and antagonists.

Key findings Glomerular expression of Beclin1, LC3B, PRR, ATG7 and ATG5 were significantly lower in the 5/6 nephrectomy than adriamycin nephropathy group and in both groups lower when compared to control groups. Western blot results were consistent with immunohistochemical data. Electron microscopy revealed signs of impaired autophagy in FSGS. Autophagic activity decreased significantly after miR-214, miR-132 and miR-34c mimics and increased after transfection with antagonists.

Significance These results showed that the role of autophagic activity and decreased expression of PRR in FSGS pathogenesis and miR-34c, miR-132 and miR-214 could be a potential treatment strategy by regulating autophagy.

Course

Other identifiers

Book Title

Degree Discipline

Degree Level

Degree Name

Citation

Published Version (Please cite this version)