Real-space condensation in a dilute Bose gas at low temperature
Date
Authors
Editor(s)
Advisor
Supervisor
Co-Advisor
Co-Supervisor
Instructor
Source Title
Print ISSN
Electronic ISSN
Publisher
Volume
Issue
Pages
Language
Type
Journal Title
Journal ISSN
Volume Title
Attention Stats
Usage Stats
views
downloads
Series
Abstract
We show with a direct numerical analysis that a dilute Bose gas in an external potential - which is choosen for simplicity as a radial parabolic well - undergoes at certain temperature Tc a phase transition to a state supporting macroscopic fraction of particles at the origin of the phase space (r = 0, p = 0). Quantization of particle motion in a well wipes out sharp transition but supports a distribution of radial particle density p(r) peacked at r = 0 (a real-space condensate) as well as the phase-space Wigner distribution density W(r, p) peaked at r = 0 and p = 0 below the crossover temperature Tc* of order of Tc. Fixed-particle-number canonical ensemble which is a combination of the fixed-N condensate part and the fixed-μ excitation part is suggested to resolve the difficulty of large fluctuation of the particle number (δN ∼ N) in the Bose-Einstein condensation problem treated within the orthodox grand canonical ensemble formalism.