Video copy detection using multiple visual cues and MPEG-7 descriptors
buir.contributor.author | Ulusoy, Özgür | |
buir.contributor.author | Güdükbay, Uğur | |
dc.citation.epage | 849 | en_US |
dc.citation.issueNumber | 8 | en_US |
dc.citation.spage | 838 | en_US |
dc.citation.volumeNumber | 21 | en_US |
dc.contributor.author | Küçüktunç, O. | en_US |
dc.contributor.author | Baştan M. | en_US |
dc.contributor.author | Güdükbay, Uğur | en_US |
dc.contributor.author | Ulusoy, Özgür | en_US |
dc.date.accessioned | 2016-02-08T09:56:11Z | |
dc.date.available | 2016-02-08T09:56:11Z | |
dc.date.issued | 2010 | en_US |
dc.department | Department of Computer Engineering | en_US |
dc.description.abstract | We propose a video copy detection framework that detects copy segments by fusing the results of three different techniques: facial shot matching, activity subsequence matching, and non-facial shot matching using low-level features. In facial shot matching part, a high-level face detector identifies facial frames/shots in a video clip. Matching faces with extended body regions gives the flexibility to discriminate the same person (e.g., an anchor man or a political leader) in different events or scenes. In activity subsequence matching part, a spatio-temporal sequence matching technique is employed to match video clips/segments that are similar in terms of activity. Lastly, the non-facial shots are matched using low-level MPEG-7 descriptors and dynamic-weighted feature similarity calculation. The proposed framework is tested on the query and reference dataset of CBCD task of TRECVID 2008. Our results are compared with the results of top-8 most successful techniques submitted to this task. Promising results are obtained in terms of both effectiveness and efficiency. © 2010 Elsevier Inc. All rights reserved. | en_US |
dc.description.provenance | Made available in DSpace on 2016-02-08T09:56:11Z (GMT). No. of bitstreams: 1 bilkent-research-paper.pdf: 70227 bytes, checksum: 26e812c6f5156f83f0e77b261a471b5a (MD5) Previous issue date: 2010 | en |
dc.identifier.doi | 10.1016/j.jvcir.2010.07.001 | en_US |
dc.identifier.issn | 1047-3203 | en_US |
dc.identifier.uri | http://hdl.handle.net/11693/22149 | en_US |
dc.language.iso | English | en_US |
dc.publisher | Academic Press | en_US |
dc.relation.isversionof | http://dx.doi.org/10.1016/j.jvcir.2010.07.001 | en_US |
dc.source.title | Journal of Visual Communication and Image Representation | en_US |
dc.subject | Activity matching | en_US |
dc.subject | Content - based copy detection | en_US |
dc.subject | Face detection | en_US |
dc.subject | MPEG - 7 | en_US |
dc.subject | Subsequence matching | en_US |
dc.subject | Time series analysis | en_US |
dc.subject | Video copy detection | en_US |
dc.subject | Visual ques | en_US |
dc.subject | Activity matching | en_US |
dc.subject | Face recognition | en_US |
dc.subject | Motion picture experts group standards | en_US |
dc.subject | Detectors | en_US |
dc.title | Video copy detection using multiple visual cues and MPEG-7 descriptors | en_US |
dc.type | Article | en_US |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Video copy detection using multiple visual cues and MPEG-7 descriptors.pdf
- Size:
- 1.68 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full printable version